Interpolation of characteristic classes of singular hypersurfaces
P. Aluffi, J.-P. Brasselet
We show that the Chern-Schwartz-MacPherson class of a hypersurface X in a nonsingular variety M `interpolates' between two other notions of characteristic classes for singular varieties, provided that the singular locus of X is smooth and that certain numerical invariants of X are constant along this locus. This allows us to define a lift of the Chern-Schwartz-MacPherson class of such `nice' hypersurfaces to intersection homology. As another application, the interpolation result leads to an explicit formula for the Chern-Schwartz-MacPherson class of X in terms of its polar classes.