
 erturbation may be required to achieve transversality Dbut the

To understand the need for a correction term Trecall Walker's extension of the Casson inrepresentations Γ and the second Γ which is called the correction term Tinvolves only conjugacy
classes of irreducible $S U(2)$ representations. sum of two terms. The first is a signed count of the conjugacy classes of irreducible $S U(3)$ the $S U(3)$ Casson invariant $\lambda_{S U(3)}(X)$ for integral homology spheres X. It is given as the
 \cdot poołsiəpun [[əM qou pue $\partial[7 q$ qs

 sense it is built into their definition- but their relationship to the fundamental group is not so
The behavior of the finite type invariants under Dehn surgery is well understood-in some

 these new invariants in geometrically meaningful ways has become ever more important. In

 a broad sense it is unclear whether $S U(n)$ gauge theory for $n>2$ contains more information
Gathering data on the $S U(3)$ Casson invariant is important for several reasons. First Sin
calculate $\lambda_{S U(3)}$ for a number of examples.
$\lambda_{S U(3)}$ defined in $\left[\begin{array}{l}101 \\ 10\end{array}\right]$. The methods developed here are used together with results from $\left[\begin{array}{l}1 \\ -1\end{array}\right]$ to they do not come from the adjoint representation on $s u(2)$ but rather from the canonical considered here are different from the ones usually studied $S U(2)$ in gauge theory in that the rho invariants of irreducible $S U(2)$ representations. The rho invariants and spectral flow include the Chern-Simons invariants C the spectral flow of the odd signature operator Γ and theoretic invariants for 3 -manifolds obtained by Dehn surgery on knots. These invariants

HANS U. BODEN, CHRISTOPHER M. HERALD, PAUL A. KIRK, AND ERIC P. KLASSEN
irreducible $S U(2)$ representations depends in a subtle way on the perturbation．To compen－ sate Γ Walker defined a correction term using integral symplectic invariants of the reducible （i．e．abelian）representations．This correction term can alternatively be viewed as a sum of differences between the Maslov index and a nonintegral term［8］or as a sum of $U(1)$ rho invariants［2

In［可］Γ the objects of study are \mathbb{Z}－homology spheres Γ but the representations are taken in $S U(3)$ ．As in the $S U(2)$ case there are no nontrivial abelian representations Γ but inside the $S U(3)$ representation variety there are those that reduce to $S U(2)$ ．This means that simply counting（with sign）the irreducible $S U(3)$ representations will not in general yield a well－ defined invariant Γ and in $\left[\begin{array}{ll}{[6]}\end{array}\right]$ is a definition for the appropriate correction term involving a difference of the spectral flow and Chern－Simons invariants of the reducible flat connections． In the simplest case Γ when the $S U(2)$ moduli space is regular as a subspace of the $S U(3)$ moduli space Γ this quantity can be interpreted in terms of the rho invariants of $A t i y a h \Gamma$ Patodi and Singer［

Neither the spectral flow nor the Chern－Simons invariants are gauge invariant Γ and as a result they are typically only computed up to some indeterminacy．Our goal of calculating $\lambda_{S U(3)}$ prevents us from working modulo gauge Γ and this technical point complicates the present work．In overcoming this obstacleГwe establish a Dehn surgery type formula for the rho invariants in \mathbb{R}（as opposed to the much simpler \mathbb{R} / \mathbb{Z}－valued invariants Γ see Theorem高苟）

The main results of this article are formulas which express the \mathbb{C}^{2} spectral flow（Theorem
 3 －manifolds X obtained by Dehn surgery on a knot in terms of simple invariants of the curves in \mathbb{R}^{2} parameterizing the $S U(2)$ representation variety of the knot complement．The primary tools include a splitting theorem for the \mathbb{C}^{2} spectral flow adapted for our purposes（Theorem ，3．9）and a detailed analysis of the spectral flow on a solid torus（Section then applied to Dehn surgeries on torus knots［culminating in the formulas of Theorem＇ 6 ． 141%
 rho invariants $\bar{\Gamma}$ and the $S \bar{U} \overline{(} \overline{3})$ Casson invariants for homology spheres obtained by surgery on a $(2, q)$ torus knot．

Theorem ${ }^{\text {When }}$ ． ［19． of the representation space．More precisely the difference in rho invariants of homotopy equivalent closed manifolds is a locally constant function on the representation space of their fundamental group．Our method of computing rho invariants differs from others in the literature in that it is a cut and paste technique rather than one which relies on flat bordisms or factoring representations through finite groups．

Previous surgery formulas for computing spectral flow require that the dimension of the co－ homology of the boundary manifold be constant along the path of connections（seeГe．g．［ $[\overline{2} \overline{0} \overline{0}])$ ． This restriction had to be eliminated in the present work since we need to compute the spec－ tral flow starting at the trivial connection Wwhere this assumption fails to hold．Our success in treating this issue promises to have other important applications to cut－and－paste methods for computing spectral flow．

The methods used in this article are delicate and draw on a number of areas．The tools we use include the seminal work of Atiyah－Patodi－Singer on the eta invariant and the index
theorem for manifolds with boundary [6] Γ analysis of $S U(2)$ representation spaces of knot groups following [$[\overline{2} 5$ and the analysis of the moduli of stable parabolic bundles over Riemann surfaces from [A]. We have attempted to give an exposition which presents the material in bite-sized pieces Γ with the goal of computing the gauge theoretic invariants in terms of a few easily computed numerical invariants associated to $S U(2)$ representation spaces of knot groups.

Contents

i1:-Introduction 1
,2. Prelimināries' 4
2.1 Symplectic linear algebrá 4
2.2. The signature operator on a 3 -manifold with boundary 5
2. 7
2.4. Limiting values of extended solutions and Cauchy data spaces 9
2.5 Sectral fow and Mas index conventions 12
2. 6 . Nicolaescu's decomposition theorem for spectral flow 13

14
3 Splitting the spectral fow up to - for Dehn surgeries
3.1. Decomposing X along a torusi 14
$3 . \bar{c}$ Connections in normal form and the modu space of 15
Extending connections normal form on over 17
3. . Paths of connections on X and abatic limits at - 17
3.5. Harmonic limits of positive and negative eigenvectors 18
3 . Spliting the spectraf 20
3. $\overline{\text { Proof }}=\overline{\text { of }}$ 21
Spectal fow on the solid torus 25
AT AnS (2) gauge group for connections on in normal form along Ti 25

- \bar{A}. The ${ }^{2}$ spetral fow on 28

5. D Dên surgery techiques for compating gave theorefic invariants 32
6. Extending paths of connections 32
 34
Th. The Chern-Simons invariants 35
Example: Dehn survery on the trefoili 37
5.5. The rho invariants' 40
7. The SU $\overline{3}$ - Casson invariant 41
'6. Computations for torus knots' 43
8. Twist conomoloy of torus knot complements 44
(2 onp 46
' 6.3 Dehn surgeries on the trefoil: 52
 55
6.5 Concluding remarks and open problems 61
References 62

2. Preliminaries

2.1. Symplectic linear algebra. We define symplectic vector spaces and lagrangian subspaces in the complex setting.

Definition 2.1. Suppose $(V,\langle\rangle$,$) is a finite-dimensional complex vector space with positive$ definite hermitian inner product.
(i) A symplectic structure is a skew-symmetric nondegenerate form $\omega: V \times V \rightarrow \mathbb{C}$ such that the signature of $i \omega$ is zero. I.e. $\Gamma \omega(x, y)=\Leftrightarrow \overline{\omega(y, x)}$ for all $x, y \in V$ and $0=$ $\omega(x, \cdot) \in V^{*} \Leftrightarrow x=0$.
(ii) An almost complex structure is an isometry $J: V \rightarrow V$ with $J^{2}=\Leftrightarrow$ Id so that the signature of $i J$ is zero.
(iii) J and ω are compatible if $\omega(x, y)=\langle x, J y\rangle$ and $\omega(J x, J y)=\omega(x, y)$.
(iv) A subspace $L \subset V$ is lagrangian if $\omega(x, y)=0$ for all $x, y \in L$ and $\operatorname{dim} L=\frac{1}{2} \operatorname{dim} V$.

We shall refer to $(V,\langle\rangle, J,, \omega)$ as a hermitian symplectic space with compatible almost complex structure.

We will use the same language for the complex Hilbert spaces $L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$ of differential forms on a Riemannian surface Σ with values in \mathbb{C}^{2}. The definitions in the infinitedimensional setting are given below.

A hermitian symplectic space can be obtained by complexifying a real symplectic space and extending the real inner product to a hermitian inner product. The symplectic spaces we consider will essentially be of this form Гexcept that we will usually tensor with \mathbb{C}^{2} instead of \mathbb{C}.

In our main application (calculating \mathbb{C}^{2}-spectral flow) Γ the hermitian symplectic spaces we consider are of the form $U \otimes_{\mathbb{R}} \mathbb{C}^{2}$ for a real symplectic vector space U. In most cases $U=H^{0+1+2}(\Sigma ; \mathbb{R})$ with the symplectic structure given by the cup product. Furthermore Γ many of the lagrangians we will encounter are of a special form; they are "induced" from certain lagrangians in $U \otimes_{\mathbb{R}} \mathbb{C}$. For the rest of this subsection we investigate certain algebraic properties of this special situation.

Suppose Γ then Γ that $(U,(), J,, \omega)$ is a real symplectic vector space with compatible almost complex structure. Construct the complex symplectic vector space

$$
V=U \otimes_{\mathbb{R}} \mathbb{C}
$$

with compatible almost complex structure as follows. Define ω on V by setting

$$
\omega\left(u_{1} \otimes z_{1}, u_{2} \otimes z_{2}\right)=z_{1} \bar{z}_{2} \omega\left(u_{1}, u_{2}\right) .
$$

Similarly Гdefine a hermitian inner product \langle,$\rangle and a compatible almost complex structure$ J by setting

$$
\left\langle u_{1} \otimes z_{1}, u_{2} \otimes z_{2}\right\rangle=z_{1} \bar{z}_{2}\left(u_{1}, u_{2}\right) \quad \text { and } \quad J(u \otimes z)=(J u) \otimes z .
$$

It is a simple matter to verify that the conditions of Definition hold and from this it follows that $(V,\langle\rangle, J,, \omega)$ is a hermitian symplectic space with compatible almost complex structure. Furthermore ΓV admits an involution $V \rightarrow V$ given by conjugation: $\overline{u \otimes z} \mapsto u \otimes \bar{z}$.

Now consider

$$
W=U \otimes_{\mathbb{R}} \mathbb{C}^{2}=V \otimes_{\mathbb{C}} \mathbb{C}^{2}
$$

Extending ω, J and \langle,$\rangle to W$ in the natural way Γ it follows that W is also a hermitian symplectic space with compatible almost complex structure. If $\left\{u_{1}, \ldots, u_{n}\right\}$ is a linearly independent subset of U, then $\left\{u_{1} \otimes e_{1}, u_{1} \otimes e_{2}, \ldots, u_{n} \otimes e_{1}, u_{n} \otimes e_{2}\right\}$ is a linearly independent subset of $W \Gamma$ where e_{1}, e_{2} denote the standard basis for \mathbb{C}^{2}. In later sections Γ it will be convenient to adopt the following notation:

$$
\begin{equation*}
\operatorname{span}_{\mathbb{C}^{2}}\left\{u_{1}, \ldots, u_{n}\right\}:=\operatorname{span}\left\{u_{1} \otimes e_{1}, u_{1} \otimes e_{2}, \ldots, u_{n} \otimes e_{1}, u_{n} \otimes e_{2}\right\} . \tag{2.1}
\end{equation*}
$$

2.2. The signature operator on a 3-manifold with boundary. Next we introduce the two first order differential operators which will be used throughout this paper. These depend on Riemannian metrics and orientation. We adopt the sign conventions for the Hodge star operator and the formal adjoint of the de Rham differential for a p-form on an oriented Riemannian n-manifold whereby

$$
^{2}=(\Leftrightarrow 1)^{p(n-p)}, \quad d^{}=(\Leftrightarrow 1)^{n(p+1)+1} * d * .
$$

The Hodge star operator is defined by the formula $a \wedge * b=(a, b) d v o l$, where (,) denotes the inner product on forms induced by the Riemannian metric and dvol denotes the volume form Γ which depends on a choice of orientation. To distinguish the star operator on the 3 -manifold from the one on the 2 -manifold Γ we denote the former by \star and the latter by $*$.

Every principal $S U(2)$ bundle over a 2 or 3 -dimensional manifold is trivial. For that reason we work only with trivial bundles $P=X \times S U(2)$ and thereby identify connections with $s u(2)$-valued 1 -forms in the usual way. Given a 3 -manifold Y with nonempty boundary $\Sigma \Gamma$ we choose compatible trivializations of the principal $S U(2)$ bundle over Y and its restriction to Σ. We will generally use upper case letters such as A for connections on the 3 -manifold and lower case letters such as a for connections on the boundary surface.

Given an $S U(2)$ connection $A \in \Omega_{X}^{1} \otimes s u(2)$ and an $S U(2)$ representation V Fwe associate to A the covariant derivative

$$
d_{A}: \Omega_{X}^{p} \otimes V \rightarrow \Omega_{X}^{p+1} \otimes V, d_{A}=d+A
$$

The two representations that arise in this paper are the canonical representation of $S U(2)$ on \mathbb{C}^{2} and the adjoint representation of $S U(2)$ on its Lie algebra $s u(2)$.

The first operator we consider is the twisted de Rham operator S_{a} on the closed oriented Riemannian 2-manifold Σ.

Definition 2.2. For an $S U(2)$ connection $a \in \Omega_{\Sigma}^{1} \otimes s u(2) \Gamma$ define the twisted de Rham operator S_{a} to be the elliptic first order differential operator

$$
\begin{gathered}
S_{a}: \Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2} \Leftrightarrow \Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2} \\
S_{a}(\alpha, \beta, \gamma)=\left(* d_{a} \beta, \Leftrightarrow * d_{a} \alpha \Leftrightarrow d_{a} * \gamma, d_{a} * \beta\right) .
\end{gathered}
$$

This operator is self-adjoint with respect to the L^{2} inner product on $\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}$ given by the formula

$$
\left\langle\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right),\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)\right\rangle=\int_{\Sigma}\left(\alpha_{1} \wedge * \alpha_{2}+\beta_{1} \wedge * \beta_{2}+\gamma_{1} \wedge * \gamma_{2}\right)
$$

where the notation for the hermitian inner product in the fiber \mathbb{C}^{2} has been suppressed.

It is convenient to introduce the almost complex structure

$$
J: \Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2} \Leftrightarrow \Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}
$$

defined by

$$
J(\alpha, \beta, \gamma)=(\Leftrightarrow * \gamma, * \beta, * \alpha) .
$$

Clearly $J^{2}=\Leftrightarrow$ Id and J is an isometry of $L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$. To avoid confusion later Γ we point out that changing the orientation of Σ does not affect the L^{2} inner product but does change the sign of J.

With this almost complex structure [the Hilbert space $L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$ becomes an infinitedimensional hermitian symplectic space Γ with symplectic form defined by $\omega(x, y)=\langle x, J y\rangle$. Recall (see Γ e.g. $\Gamma[2 \overline{2}$ if Λ is orthogonal to $J \Lambda$ and $\Lambda+J \Lambda=L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$. More generally a closed subspace V is called isotropic if V is orthogonal to $J V$.

The other operator we consider is the odd signature operator D_{A} on a compact Γ oriented Γ Riemannian 3-manifold Y Гwith or without boundary.
Definition 2.3. For an $S U(2)$ connection $A \in \Omega_{Y}^{1} \otimes s u(2) \Gamma$ define the odd signature operator D_{A} on Y twisted by A to be the formally self-adjoint first order differential operator

$$
\begin{aligned}
& D_{A}: \Omega_{Y}^{0+1} \otimes \mathbb{C}^{2} \Leftrightarrow \Omega_{Y}^{0+1} \otimes \mathbb{C}^{2} \\
& D_{A}(\sigma, \tau)=\left(d_{A}^{*} \tau, d_{A} \sigma+\star d_{A} \tau\right) .
\end{aligned}
$$

We wish to relate the operators D_{A} and S_{a} in the case when Y has boundary Σ and $a=\left.A\right|_{\Sigma}$. The easiest way to avoid confusion arising from orientation conventions is to first work on the cylinder $[\Leftrightarrow 1,1] \times \Sigma$. So assume that Σ is an oriented closed surface with Riemannian metric and that $[\Leftrightarrow 1,1] \times \Sigma$ is given the product metric and the product orientation $\mathcal{O}_{[-1,1] \times \Sigma}=\left\{d u, \mathcal{O}_{\Sigma}\right\}$. Thus $\partial([\Leftrightarrow 1,1] \times \Sigma)=(\{1\} \times \Sigma) \cup \Leftrightarrow(\{\Leftrightarrow 1\} \times \Sigma)$ using the outward normal first convention.

Assume further that $a \in \Omega_{\Sigma}^{1} \otimes s u(2)$ and $A=\pi^{*} a \in \Omega_{[-1,1] \times \Sigma}^{1} \otimes s u(2) \Gamma$ the pullback of a by the projection

$$
\pi:[\Leftrightarrow 1,1] \times \Sigma \rightarrow \Sigma .
$$

In other words Γ

$$
d_{A}=d_{a}+d u \wedge \frac{\partial}{\partial u},
$$

where u denotes the $[\Leftrightarrow 1,1]$ coordinate.
Denote by $\widetilde{\Omega}_{[-1,1] \times \Sigma}^{0+1+2}$ the space of forms on the cylinder with no $d u$ component and define

$$
\begin{gathered}
\Phi: \Omega_{[-1,1] \times \Sigma}^{0+1} \otimes \mathbb{C}^{2} \Leftrightarrow \widetilde{\Omega}_{[-1,1] \times \Sigma}^{0+1+2} \otimes \mathbb{C}^{2} \\
\left.\Phi(\sigma, \tau)=\left(i_{u}^{*}(\sigma), i_{u}^{*}(\tau), * i_{u}^{*}(\tau\lrcorner \frac{\partial}{\partial u}\right)\right),
\end{gathered}
$$

where $i_{u}: \Sigma \hookrightarrow[\Leftrightarrow 1,1] \times \Sigma$ is the inclusion at u and \lrcorner denotes contraction. The following lemma is well known and follows from a straightforward computation.

Lemma 2.4. $\Phi \circ D_{A}=J \circ\left(S_{a}+\frac{\partial}{\partial u}\right) \circ \Phi$.

The analysis on the cylinder carries over to a general 3 -manifold with boundary Σ given an identification of the collar of the boundary with $I \times \Sigma$. In the terminology of Nicolaescu's article $\left[28=1\right.$ the generalized Dirac operator D_{A} is neck compatible and cylindrical near the boundary provided the connection is in cylindrical form in a collar.

We are interested in decompositions of closed Γ oriented 3 -manifolds X into two pieces $Y \cup_{\Sigma} Z$. Eventually Σ will be a torus and Y will be a solid torus Γ but for the time being Y and Z can be any 3 -manifolds with boundary Σ. Fix an orientation preserving identification of a tubular neighborhood of Σ with $[\Leftrightarrow 1,1] \times \Sigma$ so that $\{\Leftrightarrow 1\} \times \Sigma$ lies in the interior of Y and $\{1\} \times \Sigma$ lies in the interior of Z. We identify Σ with $\{0\} \times \Sigma$. As oriented boundaries Γ $\Sigma=\partial Y=\Leftrightarrow \partial Z$ using the outward normal first convention.

Figure 1. The split 3-manifold X
To stretch the collar of $\Sigma \Gamma$ we introduce the notation

$$
\begin{aligned}
Y^{R} & =Y \cup([0, R] \times \Sigma) \\
Z^{R} & =Z \cup([\Leftrightarrow R, 0] \times \Sigma)
\end{aligned}
$$

for all $R \geq 1$. We also define Y and Z with infinite collars attached:

$$
\begin{aligned}
Y^{\infty} & =Y \cup([0, \infty) \times \Sigma) \\
Z^{\infty} & =Z \cup((\Leftrightarrow \infty, 0] \times \Sigma)
\end{aligned}
$$

Notice that since $\Phi \circ D_{A}=J \circ\left(S_{a}+\frac{\partial}{\partial u}\right) \circ \Phi \Gamma$ the operator D_{A} has natural extensions to $Y^{R} \Gamma Z^{R} \Gamma Y^{\infty} \Gamma$ and Z^{∞}.
2.3. The spaces \mathbf{P}^{+}and \mathbf{P}^{-}. In this section we identify certain subspaces of the L^{2} forms on Σ associated to the operators S_{a} and D_{A}. We first consider L^{2} solutions to $D_{A}(\sigma, \tau)=0$ on Y^{∞} and Z^{∞}. Since S_{a} is elliptic on the closed surface $\Sigma \Gamma$ its spectrum is discrete and each eigenspace is a finite-dimensional space of smooth forms.

Suppose $(\sigma, \tau) \in \Omega_{Y \infty}^{0+1} \otimes \mathbb{C}^{2}$ is a solution to $D_{A}(\sigma, \tau)=0$ on Y^{∞}. Following [$\vec{b}_{1} \Gamma$ write $\Phi(\sigma, \tau)=\sum c_{\lambda}(u) \phi_{\lambda}$ along $[0, \infty) \times \Sigma$, where $\phi_{\lambda} \in \Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}$ is an eigenvector of S_{a} with eigenvalue λ. Since $\Phi \circ D_{A}=J \circ\left(S_{a}+\frac{\partial}{\partial u}\right) \circ \Phi \Gamma$ it follows by hypothesis that

$$
\begin{align*}
0 & =\left(S_{a}+\frac{\partial}{\partial u}\right)(\Phi(\sigma, \tau)) \\
& =\sum_{\lambda}\left(\lambda c_{\lambda}+\frac{\partial c_{\lambda}}{\partial u}\right) \phi_{\lambda} \tag{2.2}
\end{align*}
$$

hence

$$
c_{\lambda}(u)=e^{-\lambda u} b_{\lambda}
$$

for some constants b_{λ}. Thus $(\sigma, \tau) \in L^{2}\left(\Omega_{Y \propto}^{0+1} \otimes \mathbb{C}^{2}\right)$ if and only if $c_{\lambda}(u)=0$ for all $\lambda \leq 0$.
This implies that there is a one-to-one correspondence Γ given by restricting from Y^{∞} to Y Cbetween the L^{2} solutions to $D_{A}(\sigma, \tau)=0$ on Y^{∞} and the solutions to $D_{A}(\sigma, \tau)=0$ on Y whose restriction to the boundary Σ lie in the positive eigenspace $P_{a}^{+} \subset L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$ of S_{a} Гdefined by

$$
P_{a}^{+}=\operatorname{span}_{L^{2}}\left\{\phi_{\lambda} \mid \lambda>0\right\}
$$

Recalling that $\Sigma=\partial Y=\Leftrightarrow \partial Z \Gamma$ we obtain a similar one-to-one correspondence between the space of L^{2} solutions to $D_{A}(\sigma, \tau)=0$ on Z^{∞} and the space of solutions to $D_{A}(\sigma, \tau)$ on Z whose restriction to the boundary Σ lie in the negative eigenspace $P_{a}^{-} \subset L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$ of S_{a} defined by

$$
P_{a}^{-}=\operatorname{span}_{L^{2}}\left\{\phi_{\lambda} \mid \lambda<0\right\} .
$$

The spectrum of S_{a} is symmetric and J preserves the kernel of S_{a} since $S_{a} J=\Leftrightarrow J S_{a}$. In fact ΓJ restricts to an isometry $J: P_{a}^{+} \Leftrightarrow P_{a}^{-}$. The eigenspace decomposition of S_{a} determines the orthogonal decomposition into closed subspaces

$$
\begin{equation*}
L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)=P_{a}^{+} \oplus \operatorname{ker} S_{a} \oplus P_{a}^{-} \tag{2.3}
\end{equation*}
$$

The spaces $P_{a}^{ \pm}$are isotropic subspaces and are lagrangian if and only if $\operatorname{ker} S_{a}=0$. Since Σ bounds the 3 -manifold Y and the operator D_{A} is defined on Y Гit is not hard to see that the signature of the restriction of $i J$ to $\operatorname{ker} S_{a}$ is zero. Hence ker S_{a} is a finite-dimensional sub-symplectic space of $L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$. The restrictions of the complex structure J and the inner product to $\operatorname{ker} S_{a}$ depend on the Riemannian metric Γ whereas the symplectic structure $\omega(x, y)=\langle x, J y\rangle$ is depends on the orientation but not on the metric.

An important observation is that if $L \subset \operatorname{ker} S_{a}$ is any lagrangian subspace Γ then $P_{a}^{+} \oplus L$ and $P_{a}^{-} \oplus L$ are infinite-dimensional lagrangian subspaces of $L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$.

If $a \in \Omega_{\Sigma}^{1} \otimes s u(2)$ is a flat connection Γ that is Γ if the curvature 2-form $F_{a}=d a+a \wedge a$ is everywhere zero Γ then the kernel of S_{a} consists of harmonic forms Γ i.e. $S_{a}(\alpha, \beta, \gamma)=0$ if and only if $d_{a} \alpha=d_{a} \beta=d_{a}^{*} \beta=d_{a}^{*} \gamma=0$. The Hodge and de Rham theorems identify ker S_{a} with the cohomology group $H^{0+1+2}\left(\Sigma ; \mathbb{C}_{a}^{2}\right) \Gamma$ where \mathbb{C}_{a}^{2} denotes the local coefficient system determined by the holonomy representation of the flat connection a. Under this identification Γ the induced symplectic structure on $H^{0+1+2}\left(\Sigma ; \mathbb{C}_{a}^{2}\right)$ agrees with the direct sum of the symplectic structures on $H^{0+2}\left(\Sigma ; \mathbb{C}_{a}^{2}\right)$ and $H^{1}\left(\Sigma, \mathbb{C}_{a}^{2}\right)$ given by the negative of the cup product. This is because the wedge products of differential forms induces the cup product on de Rham cohomology Гand because of the formula

$$
\omega(x, y)=\langle x, J y\rangle=\Leftrightarrow \int_{\Sigma} x \wedge y=\Leftrightarrow(x \cup y)[\Sigma]
$$

where the forms x and y are either both are 1 -forms or 0 - and 2 -forms Γ respectively. In this formula we have suppressed the notation for the complex inner product on \mathbb{C}^{2} for the forms as well as in the cup product. Notice that $H^{0}\left(\Sigma ; \mathbb{C}_{a}^{2}\right)$ and $H^{2}\left(\Sigma ; \mathbb{C}_{a}^{2}\right)$ are lagrangian subspaces of $H^{0+2}\left(\Sigma ; \mathbb{C}_{a}^{2}\right)$.
2.4. Limiting values of extended L^{2} solutions and Cauchy data spaces. Our next task is to identify the lagrangian of limiting values of extended L^{2} solutions Γ and its infinitedimensional generalization Γ the Cauchy data spaces Γ in the case when A is a flat connection in cylindrical form on a 3 -manifold Y with boundary Σ.

AtiyahГPatodi and Singer define the space of limiting values of extended L^{2} solutions to $D_{A} \phi=0$ to be a certain finite-dimensional lagrangian subspace

$$
L_{Y, A} \subset \operatorname{ker} S_{a},
$$

where a denotes the restriction of A to the boundary. We give a brief description of this subspace and refer to [

First we define the Cauchy data spaces; these will be crucial in our later analysis. We follow [20 is a well-defined Гinjective restriction map

$$
\begin{equation*}
r: \operatorname{ker}\left(D_{A}: L_{\frac{1}{2}}^{2}\left(\Omega_{Y}^{0+1} \otimes \mathbb{C}^{2}\right) \rightarrow L_{-\frac{1}{2}}^{2}\left(\Omega_{Y}^{0+1} \otimes \mathbb{C}^{2}\right)\right) \Leftrightarrow L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right) \tag{2.4}
\end{equation*}
$$

Unique continuation for the operator D_{A} (which holds for any generalized Dirac operator) implies that r is injective.

Definition 2.5. The image of r is a closed Γ infinite-dimensional lagrangian subspace of $L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$. It is called the Cauchy data space of the operator D_{A} on Y and is denoted

$$
\Lambda_{Y, A} .
$$

Thus the Cauchy data space is the space of restrictions to the boundary of solutions to $D_{A}(\sigma, \tau)=0$. It is shown in $[\underline{2} 8$

Definition 2.6. The limiting values of extended L^{2} solutions is defined as the symplectic reduction of $\Lambda_{Y, A}$ with respect to the isotropic subspace $P_{a}^{+} \Gamma$ the positive eigenspace of S_{a}. Precisely Γ

$$
L_{Y, A}=\operatorname{proj}_{\operatorname{ker} S_{a}}\left(\Lambda_{Y, A} \cap\left(P_{a}^{+} \oplus \operatorname{ker} S_{a}\right)\right)=\frac{\Lambda_{Y, A} \cap\left(P_{a}^{+} \oplus \operatorname{ker} S_{a}\right)}{\Lambda_{Y, A} \cap P_{a}^{+}} \subset \operatorname{ker} S_{a}
$$

This terminology comes from [绿 Γ where the restriction r is used to identify the space of L^{2} solutions of $D_{A}(\sigma, \tau)=0$ on Y^{∞} with the subspace $\Lambda_{Y, A} \cap P_{a}^{+}$Гand the space of extended L^{2} solutions with $\Lambda_{Y, A} \cap\left(P_{a}^{+} \oplus \operatorname{ker} S_{a}\right)$. Thus $L_{Y, A}$ is the symplectic reduction of the extended L^{2} solutions:

$$
\begin{equation*}
L_{Y, A}=\frac{\Lambda_{Y, A} \cap\left(P_{a}^{+} \oplus \operatorname{ker} S_{a}\right)}{\Lambda_{Y, A} \cap P_{a}^{+}} \cong \frac{\text { Extended } L^{2} \text { solutions }}{L^{2} \text { solutions }} \tag{2.5}
\end{equation*}
$$

We now recall a result of Nicolaescu on the "adiabatic limit" of the Cauchy data spaces To avoid some technical issues Γ we make the assumption $\Lambda_{Y, A} \cap P^{+}=0$; in the terminology of $\left[\hat{2} \overline{2} \overline{\|}\right.$ Ithis means that 0 is a non-resonance level for D_{A} acting on Y. This assumption does not hold in general 「but it does hold in all the cases considered here.

To set this up Γ replace Y by Y^{R} and extend D_{A} to Y^{R}. This determines a continuous family $\Lambda_{Y, A}^{R}=\Lambda_{Y^{R}, A}$ of lagrangian subspaces of $L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$ by Lemma 3.2 of [[1] corresponding subspace $L_{Y, A}^{R}$ of limiting values of extended L^{2} solutions is independent of R.

Nicolaescu's theorem asserts that $\Lambda_{Y, A}^{R}$ limits to a certain lagrangian as $R \rightarrow \infty$. Our assumption that 0 is a non-resonance level ensures that its limit is $L_{Y, A} \oplus P_{a}^{-}$. Recall from equation $\left(\frac{2}{2}, 3\right)$ that $L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$ is decomposed into the orthogonal sum of $P_{a}^{+} \Gamma P_{a}^{-}$Гand ker S_{a}. Notice also that the definition of $L_{Y, A}$ in equation (2.5.5) shows that it is independent of the collar lengthГi.e. that

$$
\operatorname{proj}_{k e r} S_{a}\left(\Lambda_{Y, A}^{R} \cap\left(P_{a}^{+} \oplus \operatorname{ker} S_{a}\right)\right)
$$

is independent of R. This follows easily from the eigenspace decomposition of S_{a} in equation (2.2).

We now state Nicolaescu's adiabatic limit theorem [
Theorem 2.7 (Nicolaescu). Assume that $\Lambda_{Y, A} \cap P_{a}^{+}=0$ (equivalently assume that there are no L^{2} solutions to $D_{A}(\sigma, \tau)=0$ on $\left.Y^{\infty}\right)$. Let $L_{Y, A} \subset \operatorname{ker} S_{a}$ denote the limiting values of extended L^{2} solutions. Then

$$
\lim _{R \rightarrow \infty} \Lambda_{Y, A}^{R}=L_{Y, A} \oplus P_{a}^{-}
$$

with convergence in the gap topology on closed subspaces, and moreover the path of lagrangians

$$
t \mapsto \begin{cases}\Lambda_{Y, A}^{1 /(1-t)} & t<1 \\ L_{Y, A} \oplus P_{a}^{-} & t=1\end{cases}
$$

is continuous for $t \in[0,1]$ in the gap topology on closed subspaces.
Next we introduce some notation for the extended L^{2} solutions. Although we use the terminology of extended L^{2} solutions and limiting values from [3] [3it is more convenient for us to use the characterization of these solutions in terms of forms on Y with $P_{a}^{+} \oplus \operatorname{ker} S_{a}$ boundary conditions.

Definition 2.8. Denote by \widetilde{V}_{A} the space of extended L^{2} solutions to $D_{A}(\sigma, \tau)=0$. This is defined by

$$
\widetilde{V}_{A}=\left\{(\sigma, \tau) \in \Omega_{Y}^{0+1} \otimes \mathbb{C}^{2} \mid D_{A}(\sigma, \tau)=0 \text { and } r(\sigma, \tau) \in P_{a}^{+} \oplus \operatorname{ker} S_{a}\right\}
$$

Define the limiting value map $p: \widetilde{V}_{A} \Leftrightarrow \operatorname{ker} S_{a}$ setting $p(\sigma, \tau)=\operatorname{proj}_{\operatorname{ker}_{S_{a}}}(r(\sigma, \tau))$ for $(\sigma, \tau) \in \widetilde{V}_{A}$ Twhere r is the restriction map of equation $(\overline{2} .4)$. Notice that $p\left(\widetilde{V}_{A}\right)=L_{Y, A}$. The choice of terminology is explained by equation (2,

Let Θ be the trivial connection on Y and θ the trivial connection on $\Sigma=\partial Y$. Let $\Lambda_{Y}=\Lambda_{Y, \Theta}$ and $L_{Y}=L_{Y, \Theta}$. The following theorem identifies L_{Y}, the limiting values of extended L^{2} solutions to $D_{\Theta}(\sigma, \tau)=0$ on Y. Since θ is the trivial connection on $\Sigma \Gamma$ ker S_{θ} can be identified with the (untwisted) cohomology $H^{0+1+2}\left(\Sigma ; \mathbb{C}^{2}\right)$.

Theorem 2.9. Suppose Y is a compact, oriented, connected 3-manifold with boundary Σ. Let Θ be the trivial connection on Y and θ the trivial connection on Σ. Identify ker S_{θ} with $H^{0+1+2}\left(\Sigma ; \mathbb{C}^{2}\right)$ using the Hodge theorem. Then the space of the limiting values of extended L^{2} solutions decomposes as

$$
L_{Y}=H^{0}\left(\Sigma ; \mathbb{C}^{2}\right) \oplus \operatorname{Im}\left(H^{1}\left(Y ; \mathbb{C}^{2}\right) \rightarrow H^{1}\left(\Sigma ; \mathbb{C}^{2}\right)\right)
$$

Proof. Proposition 4.2 of $[\overline{0} \overline{0}]$ says that if $D_{\Theta}(\sigma, \tau)=0$ and (σ, τ) has boundary conditions in $P_{\theta}^{+} \oplus \operatorname{ker} S_{\theta}$ (i.e. if $\left.(\sigma, \tau) \in V\right) \Gamma$ then $d_{\Theta} \sigma=0 \Gamma d_{\Theta} \tau=0$ and $d_{\Theta}^{*} \tau=0$. Regularity of solutions to this elliptic boundary problem ensures that σ and τ are smooth forms.

If $r(\sigma, \tau)=(\alpha, \beta, \gamma)$ Гthen $\alpha \in \Omega_{\Sigma}^{0} \otimes \mathbb{C}^{2}$ is a closed form whose cohomology class equals the restriction of the cohomology class on Y represented by σ. Similarly $\beta \in \Omega_{\Sigma}^{1} \otimes \mathbb{C}^{2}$ represents the restriction of the cohomology class of τ to Σ. Since projection to harmonic forms does not change the cohomology class of a closed form Γ

$$
\begin{aligned}
p(\tilde{V}) & \subset \operatorname{Im}\left(H^{0+1}\left(Y ; \mathbb{C}^{2}\right) \rightarrow H^{0+1}\left(\Sigma ; \mathbb{C}^{2}\right)\right) \oplus H^{2}\left(\Sigma, \mathbb{C}^{2}\right) \\
& =H^{0}\left(\Sigma ; \mathbb{C}^{2}\right) \oplus \operatorname{Im}\left(H^{1}\left(Y ; \mathbb{C}^{2}\right) \rightarrow H^{1}\left(\Sigma ; \mathbb{C}^{2}\right)\right) \oplus H^{2}\left(\Sigma ; \mathbb{C}^{2}\right)
\end{aligned}
$$

All of $H^{0}\left(\Sigma ; \mathbb{C}^{2}\right)$ is contained in $p(\tilde{V}) \Gamma$ since constant 0 -forms on Σ extend over Y Гand if σ is a constant 0 form on Y then $(\sigma, 0) \in \tilde{V}$ because its restriction to the boundary lies in ker S_{θ}. This implies that $p(\tilde{V}) \subset H^{0}\left(\Sigma ; \mathbb{C}^{2}\right) \oplus \operatorname{Im}\left(H^{1}\left(Y ; \mathbb{C}^{2}\right) \rightarrow H^{1}\left(\Sigma ; \mathbb{C}^{2}\right)\right)$.

The fact that $p(\tilde{V})$ is lagrangian implies that its dimension is half the dimension of $H^{0+1+2}\left(\Sigma, \mathbb{C}^{2}\right)$. Poincare duality and the long exact sequence of the pair (Y, T) show that $H^{0}\left(\Sigma ; \mathbb{C}^{2}\right) \oplus \operatorname{Im}\left(H^{1}\left(Y ; \mathbb{C}^{2}\right) \rightarrow H^{1}\left(\Sigma ; \mathbb{C}^{2}\right)\right)$ has the same dimension Γ so they are equal.

Given a flat connection A on Y with restriction $a=\left.A\right|_{\Sigma}$, set $K_{A}=\operatorname{ker}\left(p: \widetilde{V}_{A} \Leftrightarrow \operatorname{ker} S_{a}\right) \Gamma$ the kernel of the limiting value map. By definition K_{A} is the kernel of D_{A} on Y with P^{+} boundary conditions Cbut it can be characterized in several other useful ways. The eigenvalue expansion of equation ((i, 言) implies that every form in K_{A} extends to an exponentially decaying L^{2} solution to $\overline{D_{A}}(\sigma, \tau)=0$ on Y^{∞}. Moreover Γ the restriction map r of equation (1.2.4) sends K_{A} injectively to P_{a}^{+}by unique continuation Гand $r\left(K_{A}\right)=\Lambda_{Y, A} \cap P_{a}^{+}$. For more details Γ see the fundamental articles of AtiyahГРatodiГand Singer [\mathbf{b}_{-1}] and the book [6

Suppose that $(\sigma, \tau) \in \operatorname{ker} K_{A}$. Then Proposition 4.2 of $[2 \overline{2}]$ implies that $d_{A} \sigma=0 \Gamma d_{A} \tau=0$ and $d_{A}^{*} \tau=0$. Since A is an $S U(2)$ connection Γ we have that

$$
d\langle\sigma, \sigma\rangle=\left\langle d_{A} \sigma, \sigma\right\rangle+\left\langle\sigma, d_{A} \sigma\right\rangle=0
$$

pointwise. Thus the pointwise norm of σ is constant. Since σ extends to an L^{2} form on $Y^{\infty} \Gamma \sigma=0$. Also τ is an L^{2} harmonic 1-form on Y^{∞}. In $[1, \overline{3}]$ it is shown that if A is a flat connection then the space of L^{2} harmonic 1-forms on Y^{∞} is isomorphic to

$$
\operatorname{Im}\left(H^{1}\left(Y, \Sigma ; \mathbb{C}_{A}^{2}\right) \rightarrow H^{1}\left(Y ; \mathbb{C}_{A}^{2}\right)\right)
$$

the image of the relative cohomology in the absolute. Hence there is a short exact sequence

$$
0 \rightarrow \operatorname{Im}\left(H^{1}\left(Y, \Sigma ; \mathbb{C}_{A}^{2}\right) \rightarrow H^{1}\left(Y ; \mathbb{C}_{A}^{2}\right)\right) \Leftrightarrow \widetilde{V}_{A} \Leftrightarrow L_{Y, A} \rightarrow 0 .
$$

More generally Γ for any subspace $Q \subset \operatorname{ker} S_{a} \Gamma$ restricting p to $\widetilde{V}_{A} \cap\left(P_{a}^{+} \oplus Q\right)$ Гone obtains the following very useful proposition.
Proposition 2.10. Suppose that A is a flat connection on a 3-manifold Y with boundary Σ. Let a be the restriction of A to Σ. If $Q \subset \operatorname{ker} S_{a}$ is any subspace (not necessarily lagrangian), then there is a short exact sequence

$$
0 \rightarrow \operatorname{Im}\left(H^{1}\left(Y, \Sigma ; \mathbb{C}_{A}^{2}\right) \rightarrow H^{1}\left(Y ; \mathbb{C}_{A}^{2}\right)\right) \Leftrightarrow \operatorname{ker} D_{A}\left(P_{a}^{+} \oplus Q\right) \Leftrightarrow L_{Y, A} \cap Q \rightarrow 0
$$

where $\operatorname{ker} D_{A}\left(P_{a}^{+} \oplus Q\right)$ consists of solutions to $D_{A}(\sigma, \tau)=0$ whose restrictions to the boundary lie in $P_{a}^{+} \oplus Q$.

If $Q=0$, then this gives the isomorphisms

$$
\Lambda_{Y, A} \cap P_{a}^{+} \cong K_{A} \cong \operatorname{Im}\left(H^{1}\left(Y, \Sigma ; \mathbb{C}_{A}^{2}\right) \rightarrow H^{1}\left(Y ; \mathbb{C}_{A}^{2}\right)\right)
$$

2.5. Spectral flow and Maslov index conventions. If $D_{t}, t \in[0,1]$ is a 1 -parameter family of self-adjoint operators with compact resolvents and with D_{0} and D_{1} invertibleГthe spectral flow $S F\left(D_{t}\right)$ is the algebraic number of eigenvalues crossing from negative to positive
 we adopt the $(\Leftrightarrow \varepsilon, \Leftrightarrow \varepsilon)$ convention to handle zero eigenvalues at the endpoints.

Definition 2.11. Given a continuous 1-parameter family of self-adjoint operators with compact resolvents $D_{t}, t \in[0,1] \Gamma$ choose $\varepsilon>0$ smaller than the modulus of the largest negative eigenvalue of D_{0} and D_{1}. Then the spectral flow $S F\left(D_{t}\right)$ is defined to be the algebraic intersection number in $[0,1] \times \mathbb{R}$ of the track of the spectrum

$$
\left\{(t, \lambda) \mid t \in[0,1], \lambda \in \operatorname{Spec}\left(D_{t}\right)\right\}
$$

and the line segment from $(0, \Leftrightarrow \delta)$ to $(1, \Leftrightarrow \delta)$. The orientations are chosen so that if D_{t} has spectrum $\{n+t \mid n \in \mathbb{Z}\}$ then $S F\left(D_{t}\right)=1$.

The proof of the following proposition is clear.
Proposition 2.12. With the convention set above, the spectral flow is additive with respect to composition of paths of operators. It is an invariant of homotopy rel endpoints of paths of self-adjoint operators. If $\operatorname{dim} \operatorname{ker} D_{t}$ is constant, then $S F\left(D_{t}\right)=0$.

We will apply this definition to families of odd signature operators obtained from paths A_{t} of $S U(2)$ connections. Suppose A_{t} is a path of $S U(2)$ connections on the closed 3-manifold X for $0 \leq t \leq 1$. We denote by $S F\left(A_{t} ; X\right)$ the spectral flow of the family of operators of odd signature operators $D_{A_{t}}$ on $\Omega_{X}^{0+1} \otimes \mathbb{C}^{2}$. Since the space of all connections is contractible Γ the spectral flow $S F\left(A_{t} ; X\right)$ depends only on the endpoints A_{0} and A_{1} and we shall occasionally adopt the notation $S F\left(A_{0}, A_{1} ; X\right)$ to emphasize this point.

We next introduce a compatible convention for the Maslov index [$[1 \overline{2}]$. A good reference for these ideas is Nicolaescu's article [$2 \bar{Q}]$. Let H be a symplectic Hilbert space with compatible almost complex structure J. A pair of lagrangians (L, M) in H is called Fredholm if $L+M$ is closed and both $\operatorname{dim}(L \cap M)$ and $\operatorname{codim}(L+M)$ are finite. We will say that two lagrangians are transverse if they intersect trivially.

Consider a continuous path $\left(L_{t}, M_{t}\right)$ of Fredholm pairs of lagrangians in H. Here Γ continuity is measured in the gap topology on closed subspaces. If L_{i} is transverse to M_{i} for $i=0,1 \Gamma$ then the Maslov index $\operatorname{Mas}\left(L_{t}, M_{t}\right)$ is the number of times the two lagrangians intersect Γ counted with sign and multiplicity. We choose the sign so that if (L, M) is a fixed Fredholm pair of lagrangians such that $e^{s . J} L$ and M are transverse for all $0 \neq s \in[\Leftrightarrow \varepsilon, \varepsilon] \Gamma$ then $\operatorname{Mas}\left(e^{\varepsilon(2 t-1) . J} L, M\right)=\operatorname{dim}(L \cap M)$. A precise definition is given in [properties of the Maslov index are detailed in [9].

Extending the Maslov index to paths where the pairs at the endpoints are not transverse requires more care. We use $e^{s . J} \Gamma$ the 1 -parameter group of symplectic transformations associated to $J \Gamma$ to make them transverse. If L and M are any two lagrangians Γ then $e^{s, J} L$ and M are transverse for all small nonzero s. By
space of all pairs of lagrangians. Hence Γ if (L, M) is a Fredholm pair Γ then so is $\left(e^{s, J} L, M\right)$ for all s small.

Definition 2.13. Given a continuous 1-parameter family of Fredholm pairs of lagrangians $\left(L_{t}, M_{t}\right), t \in[0,1]$, choose $\varepsilon>0$ small enough that
(i) $e^{s . J} L_{i}$ is transverse to M_{i} for $i=0,1$ and $0<s \leq \varepsilon$ Гand
(ii) $\left(e^{s J} L_{t}, M_{t}\right)$ is a Fredholm pair for all $t \in[0,1]$ and all $0 \leq s \leq \varepsilon$.

Then define the Maslov index of the pair $\left(L_{t}, M_{t}\right)$ to be the Maslov index of ($\epsilon^{\varepsilon J} L_{t}, M_{t}$).
The proof of the following proposition is easy.
Proposition 2.14. With the conventions set above, the Maslov index is additive with respect to composition of paths. It is an invariant of homotopy rel endpoints of paths of Fredholm pairs of lagrangians. Moreover, if $\operatorname{dim}\left(L_{t} \cap M_{t}\right)$ is constant, then $\operatorname{Mas}\left(L_{t}, M_{t}\right)=0$.

The next proposition is also a straightforward consequence of our convention Гand provides a useful computational tool.

Proposition 2.15. If $\left(L_{t}, M_{t}\right)$ is a path of Fredholm pairs of lagrangians such that $\operatorname{dim}\left(L_{t} \cap\right.$ $\left.M_{t}\right)=0$ for $0<t<1$, then for all small enough positive s satisfying $e^{s . J} L_{t} \cap M_{t}$ is zero for all but finitely many t,

$$
\operatorname{Mas}\left(L_{t} \cap M_{t}\right)=\Leftrightarrow \sum_{0<t<1 / 2} \operatorname{dim}\left(e^{s J} L_{t} \cap M_{t}\right)+\sum_{1 / 2<t<1} \operatorname{dim}\left(e^{s J} L_{t} \cap M_{t}\right) .
$$

2.6. Nicolaescu's decomposition theorem for spectral flow. The spectral flow and Maslov index are related by the following result of Nicolaescuए which holds in the more general context of neck compatible generalized Dirac operators. The following is the main theorem of $[\overline{2}$ on a 3 -manifold.

Theorem 2.16. Suppose X is a 3-manifold decomposed along a surface Σ into two pieces Y and Z, with Σ oriented so that $\Sigma=\partial Y=\Leftrightarrow \partial Z$. Suppose A_{t} is a continuous path of $\operatorname{SU}(2)$ connections on X in cylindrical form in a collar of Σ. Let $\Lambda_{Y}(t)=\Lambda_{Y, A_{t}}$ and $\Lambda_{Z}(t)=\Lambda_{Z, A_{t}}$ be the Cauchy data spaces associated to the restrictions of $D_{A_{t}}$ to Y and Z. Then $\left(\Lambda_{Y}(t), \Lambda_{Z}(t)\right)$ is a Fredholm pair of lagrangians and

$$
S F\left(A_{t} ; X\right)=\operatorname{Mas}\left(\Lambda_{Y}(t), \Lambda_{Z}(t)\right)
$$

There is also a theorem for manifolds with boundary $\overline{0}$ see $[\overline{2} \overline{9} \Gamma \overline{1} \overline{\underline{3}}]$. This requires the introduction of admissible Atiyah-Patodi-Singer boundary conditions.

Definition 2.17. Let D_{A} be the odd signature operator twisted by a connection A on a 3-manifold Y with non-empty boundary Σ. A subspace $\widetilde{P} \subset L^{2}\left(\Omega_{\Sigma}^{0+1+2} \otimes \mathbb{C}^{2}\right)$ is called a self-adjoint Atiyah-Patodi-Singer (APS) boundary condition for D_{A} if \widetilde{P} is a lagrangian subspace and if Γ in addition $\Gamma \widetilde{P}$ contains all the eigenvectors of the tangential operator S_{a} which have sufficiently large positive eigenvalue as a finite codimensional subspace. In other words Γ there exists a positive number q so that

$$
\left\{\phi_{\lambda} \mid S_{a}\left(\phi_{\lambda}\right)=\lambda \phi_{\lambda} \text { and } \lambda>q\right\} \subset \widetilde{P}
$$

with finite codimension.

It follows from the results of [of D_{A} to $(\sigma, \tau) \in r^{-1}(\widetilde{P}) \subset \Omega_{Y}^{0+1} \otimes \mathbb{C}^{2}$ is a self-adjoint elliptic operator. Moreover Γ unique continuation for solutions to $D_{A}(\sigma, \tau)=0$ shows that the kernel of D_{A} on Y with APS boundary conditions \widetilde{P} is mapped isomorphically by the restriction map r to $\Lambda_{Y, A} \cap \widetilde{P}$.

A generalization of Theorem the following.

Theorem 2.18 (Nicolaescu). Suppose Y is a 3-manifold with boundary Σ. If A_{t} is a path of connections on Y in cylindrical form near Σ and \widetilde{P}_{t} is a continuous family of self-adjoint APS boundary conditions, then the spectral flow $S F\left(A_{t} ; Y ; \widetilde{P}_{t}\right)$ is well defined and

$$
S F\left(A_{t} ; Y ; \widetilde{P}_{t}\right)=\operatorname{Mas}\left(\Lambda_{Y}(t), \widetilde{P}_{t}\right)
$$

3. Splitting the spectral flow up to Θ for Dehn surgeries

In this paper Γ the spectral flow theorems described in the previous section will be applied to homology 3 -spheres X obtained by Dehn surgery on a $k n o t \Gamma$ so X is decomposed as $X=Y \cup_{\Sigma} Z$ where $Y=D^{2} \times S^{1}$ and $\Sigma=\partial Y$ is the 2-torus. In our examples ΓZ will be the complement of a knot in S^{3} 「but the methods work just as well for knot complements in other homology spheres.

This section is devoted to proving a splitting theorem for \mathbb{C}^{2}-spectral flow of the odd signature operator for paths of $S U(2)$ connections with certain properties. In the end Γ the splitting theorem expresses the spectral flow as a sum of two terms Γ one involving Z and the other involving Y.
3.1. Decomposing \mathbf{X} along a torus. We make the following assumptions Γ which will hold for the rest of this article.

1. The surface Σ is the torus

$$
T=S^{1} \times S^{1}=\left\{\left(e^{i x}, e^{i y}\right)\right\}
$$

oriented so that the 1 -forms $d x$ and $d y$ are ordered as $\{d x, d y\}$ and with the product metric Γ where the unit circle $S^{1} \subset \mathbb{C}$ is given the standard metric. The torus T contains the two curves

$$
\mu=\left\{\left(e^{i x}, 1\right)\right\} \quad \text { and } \quad \lambda=\left\{\left(1, e^{i y}\right\},\right.
$$

and $\pi_{1}(T)$ is the free abelian group generated by these two loops.
2. The 3-manifold Y is the solid torus

$$
Y=D^{2} \times S^{1}=\left\{\left(r e^{i x}, e^{i y}\right) \mid 0 \leq r \leq 1\right\}
$$

oriented so that $d r d x d y$ is a positive multiple of the volume form when $r>0$. The fundamental group $\pi_{1}(Y)$ is infinite cyclic generated by λ and the curve μ is trivial in $\pi_{1} Y$ since it bounds the disc $D^{2} \times\{1\}$. There is a product metric on Y such that a collar neighborhood of the boundary may be isometrically identified with $[\Leftrightarrow 1,0] \times T$ and $\partial Y=\{0\} \times T$. The form $d y$ is a globally defined 1 -form on $Y \Gamma$ whereas the form $d x$ is well-defined off the core circle of Y (i.e. the set where $r=0$).
3. The 3 -manifold Z is the complement of an open tubular neighborhood of a knot in a homology sphere. Moreover Fwe assume that the identification of T with ∂Z takes the loop λ to a null-homologous loop in Z.

There is a metric on Z such that a collar neighborhood of the boundary may be isometrically identified with $[0,1] \times T$. As oriented manifolds $\Gamma \partial Z=\Leftrightarrow\{0\} \times T$. The form $d x$ on ∂Z extends to a closed 1-form on Z generating the first cohomology $H^{1}(Z ; \mathbb{R})$ which we continue to denote $d x$.
4. The closed 3-manifold $X=Y \cup_{T} Z$ is a homology sphere. The metric on X is compatible with those on Z and Y and T is identified with the set $\{0\} \times T$ in the neck.
3.2. Connections in normal form and the moduli space of T. Flat connections on the torus play a central role here and in this subsection we describe a 2 -parameter family of flat connections on the torus and discuss its relation to the flat moduli space.

For notational convenience = we identify elements of $S U(2)$ with unit quaternions via

$$
\left(\begin{array}{cc}
\alpha & \beta \\
\Leftrightarrow \bar{\beta} & \bar{\alpha}
\end{array}\right) \leftrightarrow \alpha+\beta j
$$

where $\alpha, \beta \in \mathbb{C}$ satisfy $|\alpha|^{2}+|\beta|^{2}=1$. The Lie algebra $s u(2)$ is then identified with the purely imaginary quaternions

$$
\left(\begin{array}{cc}
i x & y+i z \\
\Leftrightarrow y+i z & \Leftrightarrow x x
\end{array}\right) \leftrightarrow x i+y j+z k
$$

for $x, y, z \in \mathbb{R}$.
With these notational conventions Γ the action of $s u(2)$ on \mathbb{C}^{2} can be written in the form

$$
(i x+j y+k z) \cdot\left(v_{1} e_{1}+v_{2} e_{2}\right)=\left(i x v_{1}+(y+i z) v_{2}\right) e_{1} \Leftrightarrow\left((y \Leftrightarrow i z) v_{1}+i x v_{2}\right) e_{2}
$$

In particular Γ

$$
\begin{equation*}
x i \cdot\left(v_{1} e_{1}+v_{2} e_{2}\right)=i x v_{1} e_{1} \Leftrightarrow i x v_{2} e_{2} . \tag{3.1}
\end{equation*}
$$

This corresponds to the standard inclusion $U(1) \subset S U(2), \quad \alpha \mapsto \operatorname{diag}\left(\alpha, \alpha^{-1}\right)$. On the level of Lie algebras Γ this is the inclusion $u(1) \subset s u(2), \quad i x \mapsto \operatorname{diag}(i x, \Leftrightarrow x)$.

Definition 3.1. For $(m, n) \in \mathbb{R}^{2} \Gamma$ let $a_{m, n}=\Leftrightarrow m i d x \Leftrightarrow n i d y$ and define the connections in normal form on T to be the set

$$
\mathcal{A}_{\mathrm{nf}}(T)=\left\{a_{m, n} \mid(m, n) \in \mathbb{R}^{2}\right\} .
$$

An $S U(2)$ connection A on Z or Y is said to be in normal form along the boundary if it is in cylindrical form on the collar neighborhood of T and its restriction to the boundary is in normal form.

Notice that if $a=a_{m, n}$, then $\operatorname{hol}_{a}(\mu)=e^{2 \pi i m}$ and $\operatorname{hol}_{a}(\lambda)=e^{2 \pi i n}$. The relevance of connections in normal form is made clear by the following proposition Γ which follows from a standard gauge fixing argument. We will call a connection diagonal if its connection 1-form takes values in the diagonal Lie subalgebra $u(1) \subset s u(2)$.

Proposition 3.2. Any flat $S U(2)$ connection on T is gauge equivalent to a diagonal connection. Moreover, any flat diagonal $S U(2)$ connection on T is gauge equivalent via a gauge transformation $g: T \rightarrow U(1) \subset S U(2)$ to a connection in normal form, and the normal form connection is unique if g is required to be homotopic to the constant map $\mathrm{id}: T \rightarrow\{\mathrm{id}\} \subset U(1)$.

We will introduce a special gauge group for the set of connections in normal form in Section 'A.1'Tbut for now note that any constant gauge transformation of the form $\cos (s) j+\sin (s) k$ acts on $\mathcal{A}_{\mathrm{nf}}(T)$ by sending $a_{m, n}$ to $a_{-m,-n}$. AlternativelyГone can view this as interchanging the complex conjugate eigenvalues of the $S U(2)$ matrices in the holonomy representation.

For any manifold X and compact Lie group $G \Gamma$ denote by $\mathfrak{R}_{G}(X)$ the space of conjugacy classes of representations $\rho: \pi_{1} X \rightarrow G$, i.e. Γ

$$
\mathfrak{R}_{G}(X)=\operatorname{Hom}\left(\pi_{1} X, G\right) / \text { conjugation },
$$

and denote by $\mathfrak{M}_{G}(X)$ the space of flat connections on principal G-bundles over X modulo gauge transformations of those bundles. In all cases considered here $\Gamma G=\operatorname{SU}(n), n=2,3$ and $\operatorname{dim} X \leq 3 \Gamma$ so all G-bundles over X are necessarily trivial. The association to each flat connection its holonomy representation provides a homeomorphism

$$
\text { hol : } \mathfrak{M}_{G}(X) \xlongequal{\cong} \mathfrak{R}_{G}(X)
$$

so we will use whichever interpretation is convenient.
By identifying $\mathcal{A}_{\text {nf }}(T)$ with $\mathbb{R}^{2} \Gamma$ the moduli space $\mathfrak{M}_{S U(2)}(T)$ of flat connections (modulo the full gauge group) can be identified with the quotient of \mathbb{R}^{2} by the semidirect product of $\mathbb{Z} / 2$ with $\mathbb{Z}^{2} \Gamma$ where $\mathbb{Z} / 2$ acts by reflections through the origin and \mathbb{Z}^{2} acts by translations. The quotient map is a branched covering. Indeed Isetting $f(m, n)=\left[\operatorname{hol}_{a_{m, n}}: \pi_{1} T \rightarrow S U(2)\right]$ for $(m, n) \in \mathbb{R}^{2}$ defines the covering map

$$
\begin{equation*}
f: \mathbb{R}^{2} \rightarrow \mathfrak{R}_{S U(2)}(T) \tag{3.2}
\end{equation*}
$$

Since the connection 1-form of any $a \in \mathcal{A}_{\mathrm{nf}}(T)$ takes values in $u(1) \subset s u(2) \Gamma$ the twisted cohomology splits

$$
H^{0+1+2}\left(T ; \mathbb{C}_{a}^{2}\right)=H^{0+1+2}\left(T ; \mathbb{C}_{\hat{a}}\right) \oplus H^{0+1+2}\left(T ; \mathbb{C}_{-\hat{a}}\right)
$$

where $\pm \hat{a}$ are the $u(1)$ connections given by the reduction of the bundle. Similarly lthe de Rham operator splits as

$$
\begin{equation*}
S_{a}=S_{\hat{a}} \oplus S_{-\hat{a}} \tag{3.3}
\end{equation*}
$$

where $S_{ \pm \hat{u}}: \Omega_{T}^{0+1+2} \otimes \mathbb{C} \rightarrow \Omega_{T}^{0+1+2} \otimes \mathbb{C}$ are the de Rham operators associated to the $u(1)$ connections $\pm \hat{a}$.

We leave the following cohomology calculations to the reader. (See equation (definition of $\operatorname{span}_{\mathbb{C}^{2}}$.)

1. The flat connection $a_{m, n} \in \mathcal{A}_{\mathrm{nf}}(T)$ is gauge equivalent to the trivial connection if and only if $(m, n) \in \mathbb{Z}^{2}$. Moreover Γ

$$
H^{0+1+2}\left(T ; \mathbb{C}_{a}^{2}\right)= \begin{cases}0 & \text { if }(m, n) \notin \mathbb{Z}^{2} \Gamma \tag{3.4}\\ \operatorname{span}_{\mathbb{C}^{2}}\{1, d x, d y, d x d y\} & \text { if }(m, n)=(0,0)\end{cases}
$$

2. If A is a flat $S U(2)$ connection on Y in normal form along the boundary (so $\left.A\right|_{T}=$ $a_{m, n}=\Leftrightarrow m i d x \Leftrightarrow n i d y$ with $\left.m \in \mathbb{Z}\right)$ Гthen A is gauge equivalent to the trivial connection if and only if $n \in \mathbb{Z}$. Moreover Γ

$$
H^{0+1}\left(Y ; \mathbb{C}_{A}^{2}\right)= \begin{cases}0 & \text { if } n \notin \mathbb{Z} \Gamma \tag{3.5}\\ \operatorname{span}_{\mathbb{C}^{2}}\{1, d y\} & \text { if } n=0\end{cases}
$$

3. For the trivial connection Θ on $Z \Gamma$ the coefficients are untwisted and $H^{0+1}\left(Z ; \mathbb{C}^{2}\right)=$ $\operatorname{span}_{\mathbb{C}^{2}}\{1, d x\}$.
In terms of the limiting values of extended L^{2} solutions Γ these computations together with Theorem t.9.1 give the following result.
Proposition 3.3. The spaces L_{Y} and L_{Z} of limiting values of extended L^{2} solutions for the trivial connection on Y and Z, respectively, are $L_{Y}=\operatorname{span}_{\mathbb{C}^{2}}\{1, d y\}$ and $L_{Z}=\operatorname{span}_{\mathbb{C}^{2}}\{1, d x\}$.
3.3. Extending connections in normal form on \mathbf{T} over Y. The main technical difficulty in the present work has at its core the special nature of the trivial connection. We begin by specifying a 2-parameter family of connections on Y near Θ which extend the connections on normal form on T. We will use these connections to build paths of connections on X which start at the trivial connection and Γ at first Γ move away in a specified way that is independent of Z and Y except through the homological information in the identification of their boundaries (which determine our coordinates on T).

Choose once and for all a smooth non-decreasing cutoff function $q:[0,1] \rightarrow[0,1]$ with $q(r)=0$ for r near 0 and $q(r)=1$ for r near enough to 1 that $\left(r e^{i x}, e^{i y}\right)$ lies in the collar neighborhood of T.

For each point $(m, n) \in \mathbb{R}^{2} \Gamma$ let $A_{m, n}$ be the connection in normal form on the solid torus Y whose value at the point $\left(r e^{i x}, e^{i y}\right)$ is

$$
\begin{equation*}
A_{m, n}\left(r e^{i x}, e^{i y}\right)=\Leftrightarrow q(r) m i d x \Leftrightarrow n i d y \tag{3.6}
\end{equation*}
$$

This can be thought of as a $U(1)$ connection Γ or as an $S U(2)$ connection using quaternionic notation. Notice that $A_{m, n}$ is flat if and only if $m=0 \Gamma$ and in general is flat away from an annular region in the interior of Y.
3.4. Paths of connections on \mathbf{X} and adiabatic limits at Θ. Suppose X is a homology 3-sphere decomposed as $X=Y \cup_{T} Z$. For the rest of this section Γ we will suppose that $A_{t}, t \in[0,1]$ is a continuous path of $S U(2)$ connections on X satisfying the following properties:

1. $A_{0}=\Theta \Gamma$ the trivial connection on $X \Gamma$ and A_{1} is a flat connection on X.
2. The restriction of A_{t} to the neck is a path of cylindrical normal form connections

$$
\left.A_{t}\right|_{[-1,1] \times T}=a_{m_{t}, n_{t}}
$$

for some piecewise smooth path $\left(m_{t}, n_{t}\right)$ in \mathbb{R}^{2} with $\left(m_{t}, n_{t}\right) \notin \mathbb{Z}^{2}$ for $0<t \leq 1$.
3. There exists a small number $\delta>0$ such that Γ for $0<t \leq \delta \Gamma$
(a) $\left(m_{t}, n_{t}\right)=(t, 0) \Gamma$
(b) $\left.A_{t}\right|_{Z}=\Leftrightarrow t i d x$ and $\left.A_{t}\right|_{Y}=\Leftrightarrow q(r) t i d x$ Гand
(c) $\Delta_{Z}\left(e^{i 2 \pi t}\right) \neq 0$, where Δ_{Z} denotes the Alexander polynomial of Z.

Most of the time we will assume that the restriction of A_{t} to Z is flat for all t एbut this is not a necessary hypothesis in Theorem This extra bit of generality can be useful in contexts when the space $\Re_{S U(2)}(Z)$ is not connected.

The significance of the condition involving the Alexander polynomial is made clear by the following lemma and corollary.

Lemma 3.4. If A_{t} is a path of connections satisfying conditions $1-3$ above and if $\delta>0$ is the constant in condition 3 , then $H^{1}\left(Z, T ; \mathbb{C}_{A_{t}}^{2}\right)=0$ for $0 \leq t \leq \delta$.

Idea of Proof. For $A_{0}=\Theta$, the trivial connection Γ this follows from the long exact sequence in cohomology of the pair (Z, T) for $t=0$. Using the Fox calculus to identify the Alexander matrix with the differential on 1-cochains in the infinite cyclic cover of Z proves the lemma for $0<t \leq \delta$. A very similar computation is carried out in $[2 \overline{2}]$.

Corollary 3.5. With the same hypotheses as above, the L^{2} kernel of $D_{A_{t}}$ on Z^{∞} is trivial for $0 \leq t \leq \delta$. Equivalently, letting $\Lambda_{Z}(t)=\Lambda_{Z, A_{t}}$, then for $0 \leq t \leq \delta$,

$$
\Lambda_{Z}(t) \cap P_{a_{t}}^{-}=0
$$

Furthermore, letting $\Lambda_{Z}^{R}(t)=\Lambda_{Z^{R}, A_{t}}$,

$$
\lim _{R \rightarrow \infty} \Lambda_{Z}^{R}(t)= \begin{cases}L_{Z} \oplus P_{\theta}^{+} & \text {if } t=0 \\ P_{a_{t}}^{+} & \text {if } 0<t \leq \delta\end{cases}
$$

Proof. The first claim follows immediately from Proposition $\mathbf{1}_{1} \overline{1} \mathbf{1}$ applied to Z with $K=0$. (The orientation conventions Γ as described in Section $\overline{-3}$ explain why P^{-}is used instead of P^{+}.) In the terminology of $[\overline{2} \overline{\mathcal{Z}}] \Gamma$ this means that 0 is a non-resonance level for $D_{A_{t}}$ for

3.5. Harmonic limits of positive and negative eigenvectors. In this section Dwe investigate some limiting properties of the eigenvectors of S_{a} where a ranges over a neighborhood of the trivial connection θ in the space of connections in normal form on T.

Let $s \in \mathbb{R}$ be a fixed number. (Throughout this subsection Γs is a fixed angle. In Theorem部

$$
a_{t}=\Leftrightarrow t \cos (s) i d x \Leftrightarrow t \sin (s) i d y
$$

for $0 \leq t \leq \delta$. Notice that a_{t} is a path of connections in normal form approaching the trivial connection θ and the angle of approach is s.

The path of operators $S_{a_{t}}$ is an analytic (in t) path of elliptic self-adjoint operators. It follows from the results of analytic perturbation theory that $S_{a_{t}}$ has a spectral decomposition
 have

$$
\operatorname{dim}\left(\operatorname{ker} S_{a_{t}}\right)= \begin{cases}8 & \text { if } t=0 \\ 0 & \text { if } 0<t \leq \delta\end{cases}
$$

and

$$
\operatorname{ker} S_{\theta}=\operatorname{span}_{\mathbb{C}^{2}}\{1, d x, d y, d x d y\}
$$

Since the spectrum of $S_{a_{t}}$ is symmetric「it follows that for $t>0$ there are four linearly independent positive eigenvectors and four negative eigenvectors of $S_{a_{t}}$ whose eigenvalues limit to 0 as $t \rightarrow 0^{+}$「i．e．Γ the eigenvectors limit to（untwisted） \mathbb{C}^{2}－valued harmonic forms． More precisely t there exist 4－dimensional subspaces K_{s}^{+}and K_{s}^{-}of ker S_{θ} so that

$$
\lim _{t \rightarrow 0^{+}} P_{a_{t}}^{+}=K_{s}^{+} \oplus P_{\theta}^{+} \quad \text { and } \quad \lim _{t \rightarrow 0^{+}} P_{a_{t}}^{-}=K_{s}^{-} \oplus P_{\theta}^{-} .
$$

In particular 5 the paths of lagrangians

$$
t \mapsto\left\{\begin{array} { l l }
{ K _ { s } ^ { + } \oplus P _ { \theta } ^ { + } } & { \text { if } t = 0 } \\
{ P _ { a _ { t } } ^ { + } } & { \text { if } 0 < t \leq 1 }
\end{array} \quad \text { and } \quad t \mapsto \left\{\begin{array}{ll}
K_{s}^{-} \oplus P_{\theta}^{-} & \text {if } t=0 \\
P_{a_{t}}^{-} & \text {if } 0<t \leq 1
\end{array}\right.\right.
$$

are continuous．
The finite－dimensional lagrangian subspace K_{s}^{+}will be used to extend the boundary con－ ditions P_{a}^{+}to a continuous family of boundary conditions up to θ ．Similarly K_{s}^{-}will be used to extend the boundary conditions P_{a}^{-}．The next proposition gives a useful description of these spaces．

Proposition 3．6．Define the 1 －form $\xi_{s}=\Leftrightarrow \cos (s) i d x \Leftrightarrow \sin (s) i d y$ ．Consider the family of connections on T given by $a_{t}=t \xi_{s}$ for $t \in[0, \delta]$ ．If K_{s}^{+}and K_{s}^{-}are defined as above，then

$$
\begin{aligned}
& K_{s}^{+}=\operatorname{span}\left\{\left(1 \Leftrightarrow * \xi_{s}\right) \otimes e_{1},\left(\xi_{s} \Leftrightarrow d x d y\right) \otimes e_{1},\left(1+* \xi_{s}\right) \otimes e_{2},\left(\Leftrightarrow \xi_{s} \Leftrightarrow d x d y\right) \otimes e_{2}\right\} \\
& K_{s}^{-}=\operatorname{span}\left\{\left(1+* \xi_{s}\right) \otimes e_{1},\left(\xi_{s}+d x d y\right) \otimes e_{1},\left(1 \Leftrightarrow * \xi_{s}\right) \otimes e_{2},\left(\Leftrightarrow \xi_{s}+d x d y\right) \otimes e_{2}\right\}
\end{aligned}
$$

Proof．Recalling the way a diagonal connection acts on the two factors of \mathbb{C}^{2} from equation （ $\left.{ }^{(1-1.1} .1\right)$ ） we can decompose $K_{s}^{ \pm}$into $K_{s}^{ \pm}=\hat{K}_{s}^{ \pm} \oplus \hat{K}_{-s}^{ \pm}$where $\hat{K}_{s}^{ \pm}$is the space of harmonic limits of the operator $S_{\hat{a}_{t}}$ in equation（ $\left(\overline{3}, \overline{3}, \overline{3}_{n}^{\prime}\right)$ ．

Now

$$
S_{\hat{a}_{t}}(\alpha, \beta, \gamma)=S_{\theta}(\alpha, \beta, \gamma)+t \Psi_{s}(\alpha, \beta, \gamma)
$$

where $\Psi_{s}(\alpha, \beta, \gamma)=\left(*\left(\xi_{s} \beta\right), \Leftrightarrow *\left(\xi_{s} \alpha\right) \Leftrightarrow \xi_{s}(* \gamma), \xi_{s}(* \beta)\right)$ ．
One computes directly that $\Psi_{s}\left(1, \Leftrightarrow * \xi_{s}, 0\right)=\left(1, \Leftrightarrow * \xi_{s}, 0\right)$ and that $\Psi_{s}\left(0, \xi_{s}, \Leftrightarrow d x d y\right)=$ $\left(0, \xi_{s}, \Leftrightarrow d x d y\right)$ ．Since $\Leftrightarrow \hat{a}_{t}=\Leftrightarrow \xi_{s}$ Гit follows that

$$
\left\{\left(1 \Leftrightarrow * \xi_{s}\right) \otimes e_{1},\left(\xi_{s} \Leftrightarrow d x d y\right) \otimes e_{1},\left(1+* \xi_{s}\right) \otimes e_{2},\left(\Leftrightarrow \xi_{s} \Leftrightarrow d x d y\right) \otimes e_{2}\right\} \subset K_{s}^{+} .
$$

The first formula then follows since both sides are 4－dimensional subspaces of ker S_{θ} ．
The space K_{s}^{-}can be computed directly or obtained from K_{s}^{+}using the fact that $S_{a} J=$ $\Leftrightarrow J S_{a}$ Гwhich implies that $K_{s}^{-}=J K_{s}^{+}$．

Comparing these formulas for K_{s}^{+}and K_{s}^{-}with that for L_{Z} from Proposition＇3．3＇yields the following important corollary．
Corollary 3．7．For $s=\frac{\pi}{2}$ or $\frac{3 \pi}{2}, \operatorname{dim} K_{s}^{ \pm} \cap L_{Z}=2$ and for $s=0$ or $\pi, \operatorname{dim} K_{s}^{ \pm} \cap L_{Y}=2$ ． For values of s other than those specified，the intersections are trivial．

Next「we present an example which Γ though peripheral to the main thrust of this article Γ shows that extreme care must be taken when dealing with paths of adiabatic limits of Cauchy data spaces．For the sake of argument Γ suppose that we could replace the path of Cauchy data spaces with the path of the adiabatic limits of the Cauchy data spaces．This would reduce all the Maslov indices from the infinite dimensional setting to a finite dimensional
one. This would lead to a major simplification in computing the spectral flow; for example Γ one would be able to prove Theorem '3.' by just stretching the neck of T and reducing to finite dimension.

The next theorem shows that this is not the case because Γ as suggested by Nicolaescu in [28 the corresponding paths of adiabatic limits of the Cauchy data spaces are not continuous. Corollary Nicolaescu's prediction.
Theorem 3.8. Let $A_{t}, 0 \leq t \leq \delta$ be the path of connections on Z specified in Section 3.2 The path of operators $D_{A_{t}}, t \in[0, \delta]$ is a continuous (even analytic) path of formally selfadjoint operators for which the adiabatic limits of the Cauchy data spaces are not continuous in t at $t=0$.
Proof. We use $\Lambda_{Z}^{R}(t)$ to denote the lagrangian $\Lambda_{Z^{R}, A_{t}}$. Corollary 'r.5. shows that the adiabatic limit of the Cauchy data spaces $\Lambda_{Z}^{R}(t)$ is $P_{a_{t}}^{+}$when $0<t \leq \delta$ and $L_{Z} \oplus P_{\theta}^{+}$when $t=0$. Since K_{0}^{+}is transverse to $L_{Z} \Gamma$ the adiabatic limits are not continuous in t at $t=0 \Gamma$ i.e.

$$
\lim _{t \rightarrow 0^{+}}\left(\lim _{R \rightarrow \infty} \Lambda_{Z}^{R}(t)\right)=\lim _{t \rightarrow 0^{+}} P_{a_{t}}^{+}=K_{0}^{+} \oplus P_{\theta}^{+} \neq L_{Z} \oplus P_{\theta}^{+}=\lim _{R \rightarrow \infty} \Lambda_{Z}^{R}
$$

3.6. Splitting the spectral flow. We now state the main result of this section Гa splitting formula for the spectral flow $S F\left(A_{t} ; X\right)$ of the family $D_{A_{t}}$ when X is decomposed as $X=$ $Y \cup_{T} Z$. We will use the machinery developed in [$\left[\begin{array}{l}1 \\ 1\end{array} \overline{1} 1\right]$. The technique of that article is perfectly suited to the calculation needed here. In particular ГTheorem $\sqrt{5} .9$ expresses the spectral flow of the odd signature operator on X up to the trivial connection in terms of the spectral flow on Y and Z between nontrivial connections. This greatly reduces the complexity of the calculation of spectral flow on the pieces.

In order to keep the notation under controllwe make the following definitions. Given a path A_{t} of connections on X satisfying conditions 1-3 of Subsection ${ }^{3} \mathrm{~B} . \mathrm{H} \mathrm{H}$ define the three paths ξ, η, and σ in \mathbb{R}^{2} with the property that $\xi \cdot \eta=\left(m_{t}, n_{t}\right)$ (here \cdot denotes the composition of paths):

1. ξ is the straight line from $(0,0)$ to $(\delta, 0)$.
2. η is the remainder of $\left(m_{t}, n_{t}\right)$ Гi.e. it is the path from $(\delta, 0)$ to $\left(m_{1}, n_{1}\right)$ given by (m_{t}, n_{t}) for $\delta \leq t \leq 1$.
3. σ is the small quarter circle centered at the origin from $(\delta, 0)$ to $(0, \delta)$. Thus $\sigma_{t}=$ $\left(\delta \cos \left(\frac{t \pi}{2}\right), \delta \sin \left(\frac{t \pi}{2}\right)\right)$.
We have paths of connections A_{ξ} and A_{η} on X associated to ξ and η. Here ΓA_{ξ} is the path of connections on X given by A_{t} for $0 \leq t \leq \delta \Gamma$ and A_{η} is the path of connections on X given by A_{t} for $\delta \leq t \leq 1$. In addition Γ using the construction of Subsection \widehat{b}. ${ }^{3} \Gamma$ we can associate to σ a path of connections A_{σ} on Y using the formula

$$
A_{\sigma}(t)=\Leftrightarrow q(r) \delta \cos (t) i d x \Leftrightarrow \delta \sin (t) i d y, \quad t \in\left[0, \frac{\pi}{2}\right] .
$$

Theorem 3.9. Given a path A_{t} of connections satisfying conditions 1-3 of Subsection ${ }^{3} \mathbf{3} \mathbf{4}$, consider the paths ξ, η, and σ defined above and the associated paths of connections $A_{\xi}(t), A_{\eta}(t)$,

Figure 2. The paths ξ, η, and σ
and $A_{\sigma}(t)$. Denote by $\bar{\sigma} \cdot \eta$ the path from $(0, \delta)$ to $\left(m_{1}, n_{1}\right)$ which traces σ backwards and then follows η, and denote by $A_{\bar{\sigma} \cdot \eta}$ the corresponding path of connections on Y. The spectral flow of $D_{A_{t}}$ on X splits according to the decomposition $X=Y \cup_{T} Z$ as

$$
\begin{equation*}
S F\left(A_{t} ; X\right)=S F\left(A_{\bar{\sigma} \cdot \eta}(t) ; Y ; P^{+}\right)+S F\left(A_{\eta}(t) ; Z ; P^{-}\right) \Leftrightarrow 2 \tag{3.7}
\end{equation*}
$$

The proof of Theorem in somewhat difficult and has been relegated to the next subsection. The impatient reader is invited to skip ahead.

Section 4 contains a general computation of spectral flow on the solid torus. Regarding the other term Γ there are effective methods for computing the spectral flow on the knot

 assume that the paths m_{t} and n_{t} are piecewise analytic. The results of $[\hat{2} 1] \Gamma$ combined with those of $[\underline{2} \overline{2}]\left[\right.$ can then be used to determine $S F\left(A_{n}(t) ; Z ; P^{-}\right)$. The essential point is that the spectral flow along a path of flat connections on Z is a homotopy invariant calculable in terms of Massey products on the twisted cohomology of Z.
3.7. Proof of Theorem $\overline{3} 9$. Applying Theorem shows that the spectral flow in given by the Maslov indexГi.e. Гthat

$$
S F\left(A_{t} ; X\right)=\operatorname{Mas}\left(\Lambda_{Y}(t), \Lambda_{Z}(t)\right)
$$

Since the Maslov index is additive with respect to composition of paths and is invariant under homotopy rel endpoints Γ we prove ($\mathbf{3}_{2} \mathbf{7}_{1}$) by decomposing $\Lambda_{Y}(t)$ and $\Lambda_{Z}(t)$ into 14 paths. That is Γ we define paths M_{i} and N_{i} of lagrangians for $i=1, \ldots, 14$ so that $\Lambda_{Y}(t)$ and $\Lambda_{Z}(t)$ are homotopic to the composite paths $M_{1} \cdots M_{14}$ and $N_{1} \cdots N_{14}$, respectively. We will then use the results of the previous section to identify $\operatorname{Mas}\left(M_{i}, N_{i}\right)$ for $i=1, \ldots, 14$. The situation is not as difficult as it first appears Гas most of the terms vanish. Nevertheless Гintroducing all the terms helps separate the contributions of Y and Z to the spectral flow.

Let a_{ξ}, a_{η} and a_{σ} denote the paths of connections on T obtained by restricting A_{ξ}, A_{η} and A_{σ}. In order to define M_{i} and N_{i}, we need to choose a path \mathcal{L}_{t} of finite-dimensional lagrangians in $\operatorname{ker} S_{\theta}$ with the property that $\mathcal{L}_{0}=L_{Z}$ and $\mathcal{L}_{1}=K_{0}^{+}$. A specific path \mathcal{L}_{t} will be given later Γ but it should be emphasized that the end result is independent of that particular choice.

We are ready to define the 14 paths (M_{i}, N_{i}) of Fredholm pairs of infinite-dimensional lagrangians.

1. Let M_{1} be the constant path at the lagrangian Λ_{Y} and N_{1} be the path which stretches

$$
N_{1}(t)= \begin{cases}\Lambda_{Z}^{1 /(1-t)} & \text { if } 0 \leq t<1 \\ L_{Z} \oplus P_{\theta}^{+} & \text {if } t=1\end{cases}
$$

Continuity of N_{1} is proved in 10
Since $\Lambda_{Y} \cap \Lambda_{Z}^{R} \cong H^{0+1}\left(X ; \overline{\mathbb{C}}^{2}\right)$ is independent of $R \Gamma$ it follows that $\operatorname{dim}\left(M_{1}(t) \cap\right.$ $\left.N_{1}(t)\right)=2$ for $0 \leq t<1$. At $t=1$ Twe have

$$
M_{1}(1) \cap N_{1}(1)=\Lambda_{Y} \cap\left(L_{Z} \oplus P_{\theta}^{+}\right)=L_{Y} \cap L_{Z}
$$

by Proposition 12.10 ' Γ since $H^{1}\left(Y, T ; \mathbb{C}^{2}\right)=0$. Since $\operatorname{dim}\left(L_{Y} \cap L_{Z}\right)=2 \Gamma$ it follows by Proposition 214 that $\operatorname{Mas}\left(M_{1}, N_{1}\right)=0$.
2. Let M_{2} be the constant path at the lagrangian Λ_{Y}. Let $N_{2}(t)=\mathcal{L}_{t} \oplus P_{\theta}^{+}$. We claim that $\operatorname{Mas}\left(M_{2}, N_{2}\right)=\operatorname{Mas}\left(L_{Y}, \mathcal{L}_{t}\right)$.

To see this Γ notice that M_{2} is homotopic rel endpoints to the composite of 3 paths Γ the first stretches Λ_{Y} to its adiabatic limit $P_{\theta}^{-} \oplus L_{Y} \Gamma$ the second is the constant path at $P_{\theta}^{-} \oplus L_{Y} \Gamma$ and the third is the reverse of the first Γ starting at the adiabatic limit $P_{\theta}^{-} \oplus L_{Y}$ and returning to Λ_{Y}.

The path N_{2} is homotopic rel endpoints to the composite of 3 paths Γ the first is constant at $\mathcal{L}_{0} \oplus P_{\theta}^{+}$Гthe second is $\mathcal{L}_{t} \oplus P_{\theta}^{+}$Гand the third is constant at $\mathcal{L}_{1} \oplus P_{\theta}^{+}$.

Using the homotopy invariance and additivity of the Maslov index $\Gamma \operatorname{Mas}\left(M_{2}, N_{2}\right)$ is equal to the sum of three terms. The first is zero since $\Lambda_{Y}^{R} \cap\left(\mathcal{L}_{0} \oplus P_{\theta}^{+}\right)$has dimension
 dimension of $\left(\lim _{R \rightarrow \infty} \Lambda_{Y}^{R}\right) \cap\left(\mathcal{L}_{0} \oplus P_{\theta}^{+}\right)=\left(P_{\theta}^{-} \oplus L_{Y}\right) \cap\left(\mathcal{L}_{0} \oplus P_{\theta}^{+}\right)$. Since the dimension of the intersections is constant Γ the Maslov index vanishes. Similarly the third term is zero. This leaves the second term Which equals

$$
\operatorname{Mas}\left(P_{\theta}^{-} \oplus L_{Y}, \mathcal{L}_{t} \oplus P_{\theta}^{+}\right)=\operatorname{Mas}\left(L_{Y}, \mathcal{L}_{t}\right) .
$$

3. Let M_{3} be the path $\Lambda_{Y}(t)$ for $0 \leq t \leq \delta$ (this is the path of lagrangians associated to A_{ξ} on Y). Let

$$
N_{3}(t)= \begin{cases}K_{0}^{+} \oplus P_{\theta}^{+} & \text {if } t=0 \\ P_{a_{\xi}(t)}^{+} & \text {if } 0<t \leq 1 .\end{cases}
$$

That N_{3} is continuous in t was shown in the previous subsection.
4. Let M_{4} be the path $\Lambda_{Y, A_{\sigma}(t)}$ and N_{4} the path $P_{a_{\sigma}(t)}^{+}$.

Lemma 3.10. $\operatorname{Mas}\left(M_{3} \cdot M_{4}, N_{3} \cdot N_{4}\right)=\operatorname{Mas}\left(L_{Y}, K_{t \pi / 2}^{+}\right)$.
Proof. Let ζ be the vertical line from $(0,0)$ to $(0, \delta)$ and observe that the path $\xi \cdot \sigma$ is homotopic to ζ. Denote by $A_{\zeta}(t)$ the associated path of flat connections on Y with connection 1-form given by $\Leftrightarrow t \delta i d y$ (this is just the path $A_{0, t \delta}$). Then $M_{3} \cdot M_{4}$ is homotopic rel endpoints
to $M_{3}^{\prime} \cdot M_{4}^{\prime}$, where M_{3}^{\prime} is the constant path $\Lambda_{Y}(0)$ and $M_{4}^{\prime}(t)=\Lambda_{Y, A_{\zeta}(t)}$. Similarly $\Gamma N_{3} \cdot N_{4}$ is homotopic to $N_{3}^{\prime} \cdot N_{4}^{\prime}$ Гwhere

$$
N_{3}^{\prime}(t)=K_{t \pi / 2}^{+} \oplus P_{\theta}^{+}
$$

and

$$
N_{4}^{\prime}(t)= \begin{cases}K_{\pi / 2}^{+} \oplus P_{\theta}^{+} & \text {for } t=0 \\ P_{a_{\zeta}(t)}^{+} & \text {for } 0<t \leq 1\end{cases}
$$

where $a_{\zeta}(t)$ denotes the restriction of $A_{\zeta}(t)$ to T.
Decomposing M_{3}^{\prime} and N_{3}^{\prime} further into three paths just as in step 2 (the proof that $\left.\operatorname{Mas}\left(M_{2}, N_{2}\right)=\operatorname{Mas}\left(L_{Y}, \mathcal{L}_{t}\right)\right) \Gamma$ we see that $\operatorname{Mas}\left(M_{3}^{\prime}, N_{3}^{\prime}\right)=\operatorname{Mas}\left(L_{Y}, K_{t \pi / 2}^{+}\right)$.

NextГProposition that $M_{4}^{\prime}(0) \cap N_{4}^{\prime}(0)$ is isomorphic to $L_{Y} \cap K_{\pi / 2}^{+} \Gamma$ but Corollary ${ }_{3}^{-7} \overline{7}_{1}^{\prime}$ shows that the latter intersection is zero. Another application of Proposition '2. $\overline{1} 0$ ' together with equation (shows that $M_{4}^{\prime}(t) \cap N_{4}^{\prime}(t)=0$ for positive t. Hence $M_{4}(\bar{t})$ and $N_{4}(t)$ are transverse for all t so that $\operatorname{Mas}\left(M_{4}^{\prime}, N_{4}^{\prime}\right)=0$. The proof follows from additivity of the Maslov index under composition of paths.
5. Let $\left(M_{5}, N_{5}\right)$ be $\left(M_{4}, N_{4}\right)$ run backwards「so $M_{5}(t)=\Lambda_{Y, A_{\bar{\sigma}}(t)}$ and $N_{5}(t)=P_{a_{\bar{\sigma}}(t)}^{+}$.
6. Let $M_{6}(t)=\Lambda_{Y, A_{\eta}(t)}$ and $N_{6}(t)=P_{a_{\eta}(t)}^{+}$.

Theorem $\overline{2}-18$ shows that

$$
\begin{equation*}
\operatorname{Mas}\left(M_{5} \cdot M_{6}, N_{5} \cdot N_{6}\right)=S F\left(A_{\bar{\sigma} \cdot \eta}(t) ; Y ; P^{+}\right) \tag{3.8}
\end{equation*}
$$

the advantage being that now both endpoints of $A_{\bar{\sigma} \cdot \eta}$ refer to nontrivial flat connections on Y. In the next section we will explicitly calculate this integer in terms of homotopy invariants of the path $\bar{\sigma} \cdot \eta$.
7. Let M_{7} be the path obtained by stretching $\Lambda_{Y}^{R}(1)$ to its adiabatic limit. Since a_{1}, the restriction of A_{1} to T^{2}, is a nontrivial flat connection $\lim _{R \rightarrow \infty} \Lambda_{Y}^{R}(1)=P_{a_{1}}^{-}$. This follows
 5.10 and equation (8.5

Let N_{7} be the constant path $P_{a_{1}}^{+}$. An argument similar to the one used in step 1 shows that $\operatorname{Mas}\left(M_{7}, N_{7}\right)=0$.
8. Let $M_{8}(t)=P_{a_{\eta(1-t)}}^{-}$and $N_{8}(t)=P_{a_{\eta(1-t)}^{+}}^{+}$(this is just N_{6} run backwards). Observe that since $M_{8}(t)$ and $N_{8}(t)$ are transverse for all $t \Gamma \operatorname{Mas}\left(M_{8}, N_{8}\right)=0$.
9. Let

$$
M_{9}(t)= \begin{cases}P_{a_{\xi}(1-t)}^{-} & \text {if } 0 \leq t<1 \\ K_{0}^{-} \oplus P_{\theta}^{-} & \text {if } t=1\end{cases}
$$

and

$$
N_{9}(t)= \begin{cases}P_{a_{\xi}(1-t)}^{+} & \text {for } t<1 \\ K_{0}^{+} \oplus P_{\theta}^{+} & \text {for } t=1\end{cases}
$$

Now N_{9} is just N_{3} run backwards Γ and it is not difficult to see that $M_{9}(t)$ and $N_{9}(t)$ are transverse for all t Thence $\operatorname{Mas}\left(N_{9}, M_{9}\right)=0$.
10. Let M_{10} be the constant path at $K_{0}^{-} \oplus P_{\theta}^{-}$and let N_{10} be N_{2} run backwards Γ i.e. Γ $N_{2}(t)=\mathcal{L}_{1-t} \oplus P_{\theta}^{+}$. Thus $\Gamma \operatorname{Mas}\left(M_{10}, N_{10}\right)=\operatorname{Mas}\left(K_{0}^{-}, \mathcal{L}_{1-t}\right)$.
11. Let M_{11} be the constant path at $K_{0}^{-} \oplus P_{\theta}^{-}$and N_{11} be N_{1} run backwardsГi.e. Γ

$$
N_{11}(t)= \begin{cases}L_{Z} \oplus P_{\theta}^{+} & \text {if } t=0 \\ \Lambda_{Z}^{1 / t} & \text { if } t>0\end{cases}
$$

Propositions $\overline{2}=1$ for all t Thence $\operatorname{Mas}\left(M_{11}, N_{11}\right)=0$.
12. Let M_{12} be M_{9} run backwards Γ i.e. Γ

$$
M_{12}(t)= \begin{cases}K_{0}^{-} \oplus P_{\theta}^{-} & \text {if } t=0 \\ P_{a_{\xi}(t)}^{-} & \text {if } 0<t \leq 1\end{cases}
$$

Let $N_{12}(t)=\Lambda_{Z, A_{\xi}(t)}$. Since the restriction of $A_{\xi}(t)$ to Z is flat Γ Proposition '2. $\overline{1} \overline{1} \mathbf{0}_{1}$ shows that $M_{12}(t)$ is transverse to $N_{12}(t)$ for all t. Hence $\operatorname{Mas}\left(M_{12}, N_{12}\right)=0$.
13. Let $M_{13}(t)=P_{a_{\eta}(t)}^{-}$(i.e. ΓM_{8} run backwards) and let $N_{13}(t)=\Lambda_{Z, A_{\eta}(t)}$. Theorem $\overline{2} 18$ then implies that

$$
\operatorname{Mas}\left(M_{13}, N_{13}\right)=S F\left(A_{\eta}(t) ; Z ; P^{-}\right)
$$

the spectral flow on Z.
14. Let M_{14} be M_{7} run in reverse and N_{14} the constant path at $\Lambda_{Z, A_{1}}$. An argument like the one in step 1 (but simpler since ker $S_{a_{1}}=0$) shows that $M_{14}(t) \cap N_{14}(t) \cong H^{0+1}\left(X ; \mathbb{C}_{A_{1}}^{2}\right)$ for all t. This implies that $\operatorname{Mas}\left(M_{14}, N_{14}\right)=0$.

We leave it to the reader to verify that the terminal points of M_{i} and N_{i} agree with the initial points of M_{i+1} and N_{i+1} for $i=1, \ldots, 13$, and that $M_{1} \cdots M_{14}$ and $N_{1} \cdots N_{14}$ are homotopic rel endpoints to $\Lambda_{Y}(t)$ and $\Lambda_{Z}(t) \Gamma$ respectively. Thus

$$
S F\left(A_{t} ; M\right)=\operatorname{Mas}\left(M_{1} \cdots M_{14}, N_{1} \cdots N_{14}\right)=\sum_{i=1}^{14} \operatorname{Mas}\left(M_{i}, N_{i}\right)
$$

The arguments above show that $\operatorname{Mas}\left(M_{i}, N_{i}\right)=0$ for $i=1,7,8,9,11,12$, and 14 . Moreover Γ by equation ($\overline{\bar{B}} . \bar{\delta}_{1}$) and step 13 Гwe see that

$$
\begin{aligned}
\operatorname{Mas}\left(M_{5} \cdot M_{6}, N_{5} \cdot N_{6}\right) & =S F\left(A_{\bar{\sigma} \cdot \eta}(t) ; Y ; P^{+}\right), \text {and } \\
\operatorname{Mas}\left(M_{13}, N_{13}\right) & =S F\left(A_{\eta}(t) ; Z ; P^{-}\right) .
\end{aligned}
$$

To finish the proof of Theorem terms

$$
\operatorname{Mas}\left(M_{2}, N_{2}\right)+\operatorname{Mas}\left(M_{3} \cdot M_{4}, N_{3} \cdot N_{4}\right)+\operatorname{Mas}\left(M_{10}, N_{10}\right)
$$

equals $\Leftrightarrow 2$. By Step 2Γ Lemma ${ }^{1-1} 10$ and Step 10Γ these summands equal $\operatorname{Mas}\left(L_{Y}, \mathcal{L}_{t}\right) \Gamma$ $\operatorname{Mas}\left(L_{Y}, K_{t \pi / 2}^{+}\right)$and $\operatorname{Mas}\left(K_{0}^{-}, \mathcal{L}_{1-t}\right)$ Гrespectively.

Define the path \mathcal{L}_{t} to be

$$
\begin{align*}
\mathcal{L}_{t}= & \operatorname{span}\left\{(1,(1 \Leftrightarrow t) i d x+t i d y, 0) \otimes e_{1},(1,(t \Leftrightarrow 1) i d x \Leftrightarrow t i d y, 0) \otimes e_{2},\right. \\
& \left.(1 \Leftrightarrow t, \Leftrightarrow i d x, \Leftrightarrow t d x d y) \otimes e_{1},(1 \Leftrightarrow t, i d x, \Leftrightarrow t d x d y) \otimes e_{2}\right\} . \tag{3.9}
\end{align*}
$$

Lemma 3.11. For the path \mathcal{L}_{t} in equation (\bar{L}_{2} I),
(i) $\operatorname{Mas}\left(L_{Y}, \mathcal{L}_{t}\right)=0$.
(ii) $\operatorname{Mas}\left(L_{Y}, K_{t \pi / 2}^{+}\right)=\Leftrightarrow 2$.
(iii) $\operatorname{Mas}\left(K_{0}^{-}, \mathcal{L}_{1-t}\right)=0$.
 that K_{0}^{-}and \mathcal{L}_{t} are transverse for $0 \leq t \leq 1 \Gamma$ hence $\operatorname{Mas}\left(K_{0}^{-}, \mathcal{L}_{1-t}\right)=0$. $\overline{\text { This }} \overline{\text { in }}$ proves case (iii).

We next consider claim (ii). By Corollary ${ }^{3}-\bar{T} \Gamma \operatorname{dim}\left(L_{Y} \cap K_{t \pi / 2}^{+}\right)=0$ for $0<t \leq 1 \Gamma$ so we apply Proposition $\operatorname{dim}\left(e^{s . J} L_{Y} \cap K_{t \pi / 2}^{+}\right)=0$ unless $\tan (t \pi / 2)=\tan (2 s) \Gamma$ and for this t (which is positive and close to 0) the intersection has dimension 2. Therefore the Maslov index is $\Leftrightarrow 2$.

Finally F we consider the claim (i). It is easily verified that

$$
\operatorname{dim}\left(L_{Y} \cap \mathcal{L}_{t}\right)= \begin{cases}2 & \text { if } t=0,1 \Gamma \\ 0 & \text { if } 0<t<1 \Gamma\end{cases}
$$

so again we use Proposition 1

$$
0=(1+\sin 2 s) t^{2}+(1 \Leftrightarrow \sin 2 s) t+\sin 2 s
$$

The solutions are given by

$$
t=\frac{1}{2} \pm \frac{1}{2} \sqrt{\frac{1+3 \sin 2 s}{1 \Leftrightarrow \sin 2 s}}
$$

For s small Γ there are solutions $t \in[0,1]$ if and only if $s<0$ and Proposition 2 claim (i).

4. Spectral flow on the solid torus

In this section Гwe carry out a detailed analysis of connections on the solid torus Y and show how to compute the spectral flow between two nontrivial flat connections on Y. We reduce the computation to an algebraic problem by explicitly constructing the Cayley graph associated to the gauge group using paths of connections.
4.1. An $\mathbf{S U}(2)$ gauge group for connections on \mathbf{Y} in normal form along T. We begin by specifying certain groups of gauge transformations which leave invariant the spaces of connections on T and Y which are in normal form (on T or along the collar). We will identify $S U(2)$ with the 3 -sphere S^{3} of unit quaternions Γ and we identify the diagonal subgroup with $S^{1} \subset S^{3}$.

Define $\tilde{\alpha}, \tilde{\beta}: T \rightarrow S^{1}$ by the formulas

$$
\tilde{\alpha}\left(e^{i x}, e^{i y}\right)=e^{i x}, \quad \tilde{\beta}\left(e^{i x}, e^{i y}\right)=e^{i y} .
$$

Let H be the abelian group generated by $\tilde{\alpha}$ and $\tilde{\beta} \Gamma$ which act on $\mathcal{A}_{\text {nf }}(T)$ by

$$
\tilde{\alpha} \cdot a_{m, n}=a_{m+1, n}, \quad \tilde{\beta} \cdot a_{m, n}=a_{m, n+1} .
$$

Let $\mathcal{A}_{\text {nf }}(Y)$ denote the space of connections on Y which are in normal form on the collar (cf. Definition b.i.1) Γ

$$
\mathcal{A}_{\mathrm{nf}}(Y)=\left\{A \in \Omega_{Y}^{1} \otimes s u(2)|A|_{[-1,0] \times T} \text { is cylindrical and in normal form }\right\} .
$$

Let $r: \mathcal{A}_{\mathrm{nf}}(Y) \rightarrow \mathcal{A}_{\mathrm{nf}}(T)$ denote the restriction map. We define the gauge group

$$
\mathcal{G}_{\mathrm{nf}}=\left\{\text { smooth maps } g: Y \rightarrow S^{3}|g|_{[-1,0] \times T}=\pi^{*} h \text { for some } h \in H\right\},
$$

where $\pi:[\Leftrightarrow 1,0] \times T \rightarrow T$ is projection. It is clear that Γ for $g \in \mathcal{G}_{\mathrm{nf}}$ with $\left.g\right|_{T}=h \Gamma$ we have the commutative diagram

To clarify certain arguments about homotopy classes of paths Γ it is convenient to replace the map $r: \mathcal{A}_{\mathrm{nf}}(Y) \rightarrow \mathcal{A}_{\mathrm{nf}}(T)$ with the map $Q: \mathcal{A}_{\mathrm{nf}}(Y) \rightarrow \mathbb{R}^{2}$ defined by

$$
Q(A)=(m, n) \text { where }\left.A\right|_{T}=a_{m, n} .
$$

The identity component $\mathcal{G}_{\text {nf }}^{0} \subset \mathcal{G}_{\text {nf }}$ is a normal subgroup Γ and we denote the quotient by $G=\mathcal{G}_{\mathrm{nf}} / \mathcal{G}_{\mathrm{nf}}^{0}$.

Recalling the orientation on Y from Section by the basis $\{i, j, k\}$ for $T_{1} S^{3} \Gamma$ we note that each $g \in \mathcal{G}$ has a well-defined degree Γ since $H_{3}\left(S^{3}, S^{1} ; \mathbb{Z}\right)=\mathbb{Z}$ Гand this degree remains well-defined on G.

Lemma 4.1. Let $g, g^{\prime} \in G$. Then $g \sim g^{\prime}$ if and only if $\left(\left.g\right|_{T}\right)=\left(\left.g^{\prime}\right|_{T}\right)$ and $\operatorname{deg}(g)=\operatorname{deg}(h)$.
Proof. This is a simple application of obstruction theory that we leave to the reader.

It follows from Lemma 'A.' that the restriction map descends to a map $P: G \rightarrow H$ which is onto Γ since $\pi_{1}\left(S^{3}\right)=\pi_{2}\left(\overline{S^{3}}\right)=0$. Set $K=\operatorname{ker} P \cong \mathbb{Z}$ Гwhere the last isomorphism is given by the degree.

Lemma 4.2. The kernel of $P: G \rightarrow H$ is central.
Proof. Suppose $k \in K$ and $g \in G$. After a homotopy Γ we may assume that there is a 3 -ball B^{3} contained in the interior of Y such that $\left.k\right|_{Y-B^{3}}=1$ and $\left.g\right|_{B^{3}}=1$. It follows directly from this that $g k=k g$.
 make the definitions in $\mathcal{G}_{\mathrm{nf}}$ but they should be reduced $\left.\bmod \mathcal{G}_{\mathrm{nf}}^{0}\right)$:
(i) $\alpha\left(r e^{i x}, w\right)=q(r) e^{i x}+\sqrt{1 \Leftrightarrow(q(r))^{2}} j$.
(ii) $\beta\left(r e^{i x}, w\right)=w \Gamma$
(iii) $\gamma(z, w)=$ a generator of K with $\operatorname{deg}(\gamma)=1$.

It will be useful to denote by $\bar{\alpha}$ the map

$$
\bar{\alpha}\left(r e^{i x}, w\right)=r e^{i x}+\sqrt{1 \Leftrightarrow r^{2}} j
$$

which is not in \mathcal{G} but is homotopic rel boundary to α and is simpler Гand is therefore useful when computing degrees of maps involving α. Observe that

$$
\begin{array}{lll}
P(\alpha)=\tilde{\alpha} & \text { and } & \operatorname{deg}(\alpha)=0 \\
P(\beta)=\tilde{\beta} & \text { and } & \operatorname{deg}(\beta)=0 \\
P(\gamma)=1 & \text { and } & \operatorname{deg}(\gamma)=1
\end{array}
$$

Now $[\alpha, \gamma]=[\beta, \gamma]=1$ Thence G is a central extension of H by K :

$$
0 \Leftrightarrow K \Leftrightarrow G \Leftrightarrow H \Leftrightarrow 0
$$

Such extensions are classified by elements of $H^{1}(H ; \mathbb{Z})$, and to determine the cocycle corresponding to our extension Twe just need to calculate which element of K is represented by the map $[\alpha, \beta]$. This amounts to calculating the degree of this map.
Lemma 4.3. $[\alpha, \beta]=\gamma^{-2}$.
Proof. Set $h=[\alpha, \beta]$. Clearly $\Gamma \in \operatorname{ker}(P) \Gamma$ so we just need to calculate its degree. It is sufficient to compute the degree of $\bar{h}=[\bar{\alpha}, \beta] \Gamma$ since it is homotopic to h rel boundary. Using the coordinates $\left(r e^{i x}, e^{i y}\right)$ for Y and writing quaternions as $A+j B$ for $A, B \in \mathbb{C}$, we compute that

$$
\bar{h}\left(r e^{i x}, e^{i y}\right)=r^{2}+\left(1 \Leftrightarrow r^{2}\right) e^{-2 i y}+j r \sqrt{1 \Leftrightarrow r^{2}} e^{-i x}\left(1 \Leftrightarrow e^{-2 i y}\right) .
$$

To determine the degree of $\bar{h} \Gamma$ consider the value $k \in S^{3}$ which we will prove is a regular value. Solving $\bar{h}\left(r e^{i x}, e^{i y}\right)=k$ yields the two solutions $r=\frac{1}{\sqrt{2}} \Gamma x=\frac{\pi}{2} \Gamma y=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$. Applying the differential $d \bar{h}$ to the oriented basis $\left\{\frac{\partial}{\partial r}, \frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\}$ for the tangent space of Y and then translating back to $T_{1}\left(S^{3}\right)$ by right multiplying by $\Leftrightarrow k$ gives the basis $\{\Leftrightarrow 2 \sqrt{2} k, i, i+j\}$ of $S^{3} \Gamma$ which is negatively oriented compared to $\{i, j, k\}$. Since the computation gives this answer for both inverse images of $k \Gamma$ it follows that $\operatorname{deg}(h)=\Leftrightarrow 2 \Gamma$ which proves the claim.

We have now established the structure of G. Every element $g \in G$ can be expressed uniquely as $g=\alpha^{a} \beta^{b} \gamma^{c}$ where $a, b, c \in \mathbb{Z}$. Furthermore Γ with respect to this normal form Γ multiplication can be computed as follows:

$$
\left(\alpha^{a_{1}} \beta^{b_{1}} \gamma^{c_{1}}\right)\left(\alpha^{a_{2}} \beta^{b_{2}} \gamma^{c_{2}}\right)=\alpha^{a_{1}+a_{2}} \beta^{b_{1}+b_{2}} \gamma^{2 b_{1} a_{2}+c_{1}+c_{2}}
$$

The next result determines the degree of any element in normal form.
Theorem 4.4. $\operatorname{deg}\left(\alpha^{a} \beta^{b} \gamma^{c}\right)=c \Leftrightarrow a b$.
Proof. We begin by computing the degree of $\alpha^{a} \beta^{b}$. Let $f_{a}: D^{2} \times S^{1} \rightarrow S^{3}$ be the map

$$
f_{a}\left(r e^{i x}, e^{i y}\right)=\alpha\left(r^{|a|} e^{i a x}, e^{i b y}\right)=r^{|a|} e^{i a x}+\sqrt{1 \Leftrightarrow r^{2|a|}} j
$$

Then f_{a} is homotopic rel boundary to $\bar{\alpha}^{a}$ using Lemma ' $\bar{A} \overline{1} 1$ in since they agree on the boundary and both have degree 0 (they factor through the projection to D^{2}).

The degree of $\alpha^{a} \cdot \beta^{b}$ equals the degree of $f_{a} \cdot \beta^{b} \Gamma$ since α^{a} is homotopic to f_{a}.

But $f_{a} \cdot \beta^{b}$ factors as the composite of the map

$$
\begin{gathered}
D^{2} \times S^{1} \Leftrightarrow D^{2} \times S^{1} \\
\left(r e^{i x}, e^{i y}\right) \mapsto\left(r^{|a|} e^{i a x}, e^{i b y}\right)
\end{gathered}
$$

and the map

$$
\begin{gathered}
D^{2} \times S^{1} \Leftrightarrow S^{3} \\
(z, w) \mapsto \bar{\alpha}(z, w) \beta(z, w) .
\end{gathered}
$$

The first map is a product of a branched cover of degree a and a cover of degree b and so has degree $a b$. The second restricts to a homeomorphism of the interior of the solid torus with $S^{3} \Leftrightarrow S^{1}$ which can easily be computed to have degree $\Leftrightarrow 1$. Thus $\alpha^{a} \beta^{b}$ has degree $\Leftrightarrow a b$.

To finish proving the theorem Гwe need to calculate the effect of multiplying by γ. For any $g \in \mathcal{G}$ Гwe can arrange by homotopy that γ is supported in a small 3 -ball while g is constant in the same 3 -ball. It is then clear that for all $g \in G \Gamma \operatorname{deg}(g \gamma)=\operatorname{deg}(g)+1$.
4.2. The \mathbb{C}^{2} spectral flow on Y. Suppose that $A_{t} \in \mathcal{A}_{\mathrm{nf}}(Y)$ is a path between the flat connections A_{0} and A_{1} on Y. We will present a technique for computing $S F\left(A_{t} ; Y ; P^{+}\right)$, the spectral flow of the odd signature operator

$$
D_{A_{t}}: \Omega_{Y}^{0+1} \otimes \mathbb{C}^{2} \Leftrightarrow \Omega_{Y}^{0+1} \otimes \mathbb{C}^{2}
$$

on Y with P^{+}boundary conditions. We assume that for all $t \Gamma Q\left(A_{t}\right) \in \mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$. This implies that $P_{a_{t}}^{+}$varies continuously in t, where a_{t} denotes the restriction of A_{t} to T [$\left.\overline{2} \overline{\overline{3}}\right]$. Moreover the exact sequence in Proposition $\overline{2}=10^{-1}$ shows that the kernels of $D_{A_{0}}$ and $D_{A_{1}}$ with P^{+} boundary conditions are zero.

Lemma 4.5. Let Y_{1} and Y_{2} be solid tori, and let $X=Y_{1} \cup Y_{2}$ be the lens space obtained by gluing ∂Y_{1} to ∂Y_{2} using an orientation reversing isometry $h: \partial Y_{1} \rightarrow \partial Y_{2}$. Let A_{t} be a path in $\mathcal{A}_{\mathrm{nf}}\left(Y_{1}\right)$ and B_{t} a path in $\mathcal{A}_{\mathrm{nf}}\left(Y_{2}\right)$ so that $h^{*}\left(\left.B_{t}\right|_{\partial Y_{2}}\right)=\left.A_{t}\right|_{\partial Y_{1}}$. Assume that $Q\left(A_{t}\right) \in \mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$ and that $A_{0}, A_{1}, B_{0}, B_{1}$ are flat. Then

$$
S F\left(A_{t} \cup B_{t} ; X\right)=S F\left(A_{t} ; Y_{1} ; P^{+}\right)+S F\left(B_{t} ; Y_{2} ; P^{+}\right) .
$$

Proof. Write $T=\partial Y_{1}$ and let $a_{t}=\left.A_{t}\right|_{T}$. The cohomology computation ($\bar{B} . \overline{1} \cdot \overline{1}$) shows that $H^{0+1+2}\left(T ; \mathbb{C}_{a_{t}}^{2}\right)=0$ for all t. Hence ker $S_{a_{t}}=0$ for all t. Also . that $H^{0+1}\left(Y_{1} ; \mathbb{C}_{A_{i}}^{2}\right)=\operatorname{ker} D_{A_{i}}\left(P^{+}\right)=0$ for $i=0,1$ and that $H^{0+1}\left(Y_{1} ; \mathbb{C}_{B_{i}}^{2}\right)=\operatorname{ker} \bar{D}_{B_{i}}^{-}\left(P^{+}\right)=$ 0 for $i=0,1$.

The lemma now follows from the splitting theorem for spectral flow of Bunke (Corollary

Lemma 4.6. Suppose A_{t} and B_{t} are two paths in $\mathcal{A}_{\mathrm{nf}}(Y)$ such that A_{i} and B_{i} are flat for $i=0,1$. Suppose further that the paths $Q\left(A_{t}\right)$ and $Q\left(B_{t}\right)$ miss the integer lattice $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$ for all $t \in[0,1]$. If $A_{i}=g_{i} \cdot B_{i}$ for $i=0,1$ where $g_{i} \in \mathcal{G}_{\mathrm{nf}}^{0}$ and if the paths $Q\left(A_{t}\right)$ and $Q\left(B_{t}\right)$ are homotopic rel endpoints in $\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$, then $S F\left(A_{t} ; Y ; P^{+}\right)=S F\left(B_{t} ; Y ; P^{+}\right)$.

Proof. First Γ note that a path of the form $g_{t} A \Gamma$ where g_{t} is a path in \mathcal{G} Гhas spectral flow zero Γ because the eigenvalues are all constant. (This follows from the fact that the operators in the path are all conjugate.) Hence we may assume that $A_{i}=B_{i}$ for $i=0,1$ (if not Γ add a path of the form $g_{t} A_{i}$ to each end of B_{t} bringing the endpoints together). Now $\overline{\text { using }}$ the fact that $\mathcal{A}_{\mathrm{nf}}(Y)$ is a bundle over $\mathcal{A}_{\mathrm{nf}}(T)$ with contractible fiber Γ it is easy to see that the homotopy between $Q\left(A_{t}\right)$ and $Q\left(B_{t}\right)$ can be lifted to one between A_{t} and B_{t} which will of
 proving the lemma.

Based on this lemma me may now state precisely the question we wish to answer: Given a path of connections A_{t} in $\mathcal{A}_{\text {nf }}(Y)$ between two flat connections such that $Q\left(A_{t}\right)$ avoids $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$ Thow can one calculate $S F\left(A_{t} ; Y ; P^{+}\right)$from $A_{0} \Gamma A_{1}$ Гand the image $Q\left(A_{t}\right)$ in $\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$?

The following lemmas serve as our basic computational tools in what follows.
Lemma 4.7. Suppose X is a closed oriented 3-manifold and $g: X \rightarrow S U(2)$ is a gauge transformation. If A_{0} is any $S U(2)$ connection on X, and A_{t} is any path of connections from A_{0} to $A_{1}=g \cdot A_{0}=g A g^{-1} \Leftrightarrow d g g^{-1}$, then

$$
S F\left(A_{t} ; X\right)=\Leftrightarrow 2 \operatorname{deg}(g),
$$

Proof. Recall that we are using the $(\Leftrightarrow \varepsilon, \Leftrightarrow)$ convention for computing spectral flows. The claim follows from a standard application of the Index Theorem. See for example the appendix to [2742].

Lemma 4.8. Let A be any connection in $\mathcal{A}_{\text {nf }}(Y)$ with $Q(A) \in \mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$ and let $g \in \mathcal{G}_{\text {nf }}$ be a gauge transformation which is 1 on the collar neighborhood of the boundary T. If A_{t} is any path in $\mathcal{A}_{\mathrm{nf}}(Y)$ from A to $g \cdot A$ which is constant on T (e.g., the straight line from A to $g \cdot A)$, then $S F\left(A_{t} ; Y ; P^{+}\right)=\Leftrightarrow 2 \operatorname{deg}(g)$.

Proof. Consider a path B_{t} of connections on the double $D(Y)$ of Y which is constant at A on one side and is A_{t} on the other side Γ and the gauge transformation h which is g on one side and the identity on the other. Then $B_{1}=h B_{0}$ Гand $\operatorname{deg}(h)=\operatorname{deg}(g)$. Lemma'A. $\bar{A} \bar{Z}_{1}$ shows that $S F\left(B_{t} ; D(Y)\right)=\Leftrightarrow 2 \operatorname{deg}(g)$. Now apply Lemma $\bar{A} . \bar{S}_{-}$

Since we are interested in paths between flat connections Γ we begin by analyzing the components of orbits of flat connections in $\mathcal{A}_{\mathrm{nf}}(Y) / \mathcal{G}_{\mathrm{nf}}^{0}$. First .note that all the flat connections in $\mathcal{A}_{\text {nf }}(Y)$ project to $\mathbb{Z} \times \mathbb{R}$ under $Q: \mathcal{A}_{\text {nf }}(Y) \rightarrow \mathbb{R}^{2}$. Set \tilde{J} equal to the open vertical line segment $\tilde{J}=\{(0, t) \mid 0<t<1\} \subset \mathbb{R}^{2}$.

A natural choice of gauge representatives for $Q^{-1}(\tilde{J})$ is the path of connections $J=$ $\{\Leftrightarrow t i d y \mid 0<t<1\} \subset \mathcal{A}_{\mathrm{nf}}(Y)$. The connection $\Leftrightarrow t i d y$ is a flat connection on Y whose holonomy sends μ to 1 and λ to $e^{2 \pi i t}$. Note that the spectral flow of any path A_{t} whose image modulo $\mathcal{G}_{\text {nf }}^{0}$ lies in J is 0Γ since ker $D_{A_{t}}$ is constantly zero.

The set of all flat orbits in $\mathcal{A}_{\mathrm{nf}}(Y) / \mathcal{G}_{\mathrm{nf}}^{0}$ not containing any gauge transformations of the trivial connection may be expressed as $\bigcup_{g \in G}(g \cdot J)$. For every nontrivial $g \in G \Gamma g \cdot J$ is disjoint from J. This can be seen by considering the action of $P(g)$ on J Гand using Lemma '. ${ }^{-1}$ above. The reader is encouraged to visualize the orbit of J under G as consisting of \mathbb{Z}
homeomorphic copies of J sitting above each translate $(p, q)+\tilde{J}$ in $\mathbb{R}^{2} \Gamma$ where p and q are integers.

We will now build a graph Γ with one vertex corresponding to each component of $G \cdot J$. Note that these vertices are also in one-to-one correspondence with G. Next 「we will construct some directed edges with J as their initial point. Actually「for specificity [we will think of their initial point as being $c_{0}=\Leftrightarrow \frac{1}{2} i d y$ of J.

Let E_{α} be the straight line path of connections from c_{0} to $\alpha \cdot c_{0}$. We construct a corresponding (abstract) edge in Γ from J to $\alpha J \Gamma$ which we also denote by E_{α}. Now for all $g \in G \Gamma$ construct another edge $g E_{\alpha}$ from $g \cdot J$ to $g \alpha J \Gamma$ which one should think of as corresponding to the path $g E_{\alpha}$ in $\mathcal{A}_{\text {nf }}(Y)$. Thus every vertex of Γ serves as the initial point of one α-edge and the terminal point of another.

Next we construct a path E_{β} in $\mathcal{A}_{\text {nf }}(Y)$ from c_{0} to βc_{0}. We cannot use the straight line because its image in \mathbb{R}^{2} hits the integer lattice Γ so instead we define E_{β} to be the path in $\mathcal{A}_{\mathrm{nf}}(Y)$ given by

$$
A_{t}=\Leftrightarrow \frac{1}{2} q(r) \cos t i d x \Leftrightarrow\left(1+\frac{1}{2} \sin t\right) i d y, \quad \Leftrightarrow \frac{\pi}{2} \leq t \leq \frac{\pi}{2},
$$

where $q(r)$ is the radial bump function in equation ($\overline{\bar{B}} . \bar{W}_{1}$). Thus $Q\left(E_{\beta}\right)$ is the semicircle $\left(\frac{1}{2} \cos t, 1+\frac{1}{2} \sin t\right) \Gamma t \in\left[\Leftrightarrow \frac{\pi}{2}, \frac{\pi}{2}\right]$. (As before Γ it is only the homotopy class of the path E_{β} in $Q^{-1}\left(\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}\right)$ rel endpoints that is important.) For each $g \in G \Gamma$ build an edge $g E_{\beta}$ in Γ from $g \cdot J$ to $g \beta \cdot J$ corresponding to the path of connections $g E_{\beta}$.

Finally Γ construct a path of connections E_{γ} in $\mathcal{A}_{\text {nf }}(Y)$ from c_{0} to γc_{0} such that $Q\left(E_{\gamma}\right)$ is the constant path in \mathbb{R}^{2} at $\left(0, \frac{1}{2}\right)$. A straight-line path would be acceptable in this case. Once again Γ for each $g \in G \Gamma$ define an edge $g E_{\gamma}$ in Γ from $g \tilde{J}$ to $g \gamma \tilde{J}$. The resulting graph Γ is isomorphic to the Cayley graph of $G \Gamma$ defined with respect to right multiplication by the generators $\{\alpha, \beta, \gamma\}$.

Notice that we have also constructed a 1-dimensional graph in $\mathcal{A}_{\text {nf }}(Y)$ the image of which in $\mathcal{A}_{\mathrm{nf}}(Y) / \mathcal{G}_{\mathrm{nf}}^{0}$ is invariant under G; this will provide us with a complete (up to homotopy and gauge transformation in $\mathcal{G}_{\text {nf }}^{0}$) collection of paths of connections in $\mathcal{A}_{\text {nf }}(Y)$ connecting components of the flat connections in $Q^{-1}\left(\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}\right)$.

The next step is to associate to each edge of Γ an integer Γ which will give the spectral flow of the odd signature operator D_{A} on the solid torus Y with P^{+}boundary conditions along the corresponding path of connections in $\mathcal{A}_{\mathrm{nf}}(T)$. Of course Γ the integer associated to the path $g E_{\alpha}$ is independent of $g \in G$ since the gauge transformation g induces a relation of conjugacy between D_{A} and $D_{g \cdot A}$ for each A in the path. An analogous fact holds for the edges E_{β} and E_{γ} Гas well. So we just need to find three integers $k_{\alpha} \Gamma k_{\beta} \Gamma$ and k_{γ} Гone for each class of edges.

Theorem 4.9. These constants have values $k_{\alpha}=2, k_{\beta}=\Leftrightarrow 2$, and $k_{\gamma}=\Leftrightarrow 2$.
Proof. The value of k_{γ} is calculated to be $\Leftrightarrow 2$ in Lemma ${ }^{1} 8.8$ so we turn our attention to calculating k_{α} and k_{β}.

Let Y_{1} and Y_{2} be two solid tori with the same orientations. For $i=1,2$, set $T_{i}=\partial Y_{i}$ with coordinates x_{i}, y_{i} and let $\mu_{i} \Gamma \lambda_{i} \Gamma d x_{i} \Gamma$ and $d y_{i}$ denote the loops and forms on Y_{i}. Glue Y_{1} to Y_{2} by the homeomorphism of T_{1} with T_{2} which identifies $\left(e^{i x_{1}}, e^{i y_{1}}\right)$ with $\left(e^{i\left(x_{2}+y_{2}\right)}, e^{i\left(2 x_{2}+y_{2}\right)}\right)$. Since this map is orientation reversing Γ we may give $Y_{1} \cup Y_{2}$ the orientation of both Y_{1} and
Y_{2}. Let $A_{1, t}$ denote the path of connections on Y_{1} corresponding to E_{α}. When restricted to $T_{1} \Gamma$ these connections are given by the straight line Γ i.e. $\left.\Gamma A_{1, t}\right|_{T_{1}}=\Leftrightarrow t i d x_{1} \Leftrightarrow \frac{1}{2} i d y_{1}$.

We now need to construct a path of connections on Y_{2} which is compatible along T_{2} with $\left.A_{1, t}\right|_{T}$. Pulling the connections $\left.A_{1, t}\right|_{T_{1}}$ back to T_{2} by the above formula gives a path

$$
a_{t}=\Leftrightarrow(t+1) i d x_{2} \Leftrightarrow\left(t+\frac{1}{2}\right) i d y_{2}
$$

of connections on T_{2}. Under the identification $\mathcal{A}_{\text {nf }}\left(T_{2}\right) \cong \mathbb{R}^{2} \Gamma$ this is the straight line from $\left(1, \frac{1}{2}\right)$ to $\left(2, \frac{3}{2}\right)$. Now define the path B_{t} in $\mathcal{A}_{\text {nf }}\left(Y_{2}\right)$ by first following the path αE_{β} from αc_{0} to $\alpha \beta c_{0} \Gamma$ and then the path $\alpha \beta E_{\alpha}$ from $\alpha \beta c_{0}$ to $\alpha \beta \alpha c_{0}$. Note that B_{t} runs from αc_{0} to $\alpha \beta \alpha c_{0}$ Гand that $Q\left(B_{t}\right)$ is a path which is homotopic rel endpoints in $\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$ to the straight line from ($1, \frac{1}{2}$) to ($2, \frac{3}{2}$). Hence we may define a path $A_{2, t}$ in $\mathcal{A}_{\mathrm{nf}}\left(Y_{2}\right)$ which is homotopic rel endpoints to B_{t} in $Q^{-1}\left(\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}\right) \subset \mathcal{A}_{\mathrm{nf}}\left(Y_{2}\right)$ and has the property that $Q\left(A_{2, t}\right)=\left(t+1, t+\frac{1}{2}\right)$. By Lemma $\bar{A}_{-1} \cdot \bar{T}\left[B_{t}\right.$ and $A_{2, t}$ have the same spectral flow.

Consider the path of connections A_{t} on $Y_{1} \cup Y_{2}$ defined to be $A_{1, t}$ on Y_{1} and $A_{2, t}$ on Y_{2}. Note that $A_{1}=g A_{0} \Gamma$ where g is a gauge transformation on $Y_{1} \cup Y_{2}$ equal to α on Y_{1} and equal to $\alpha \beta$ on Y_{2}. Since $\operatorname{deg}(\alpha)=0$ and $\operatorname{deg}(\alpha \beta)=\Leftrightarrow 1$ by Theorem $\operatorname{deg}(g)=\Leftrightarrow 1$. Hence $S F\left(A_{t} ; Y_{1} \cup Y_{2}\right)=2$ by Lemma $\bar{A} \bar{A}$.

$$
S F\left(A_{t} ; Y_{1} \cup Y_{2}\right)=S F\left(A_{1, t} ; Y_{1} ; P^{+}\right)+S F\left(A_{2, t} ; Y_{2} ; P^{+}\right)=2 k_{\alpha}+k_{\beta} .
$$

This gives the linear equation $2=2 k_{\alpha}+k_{\beta}$.
Repeating this process Γ we glue Y_{1} to Y_{2} by the homeomorphism of T_{1} with T_{2} which identifies $\left(e^{i x_{1}}, e^{i y_{1}}\right)$ with $\left(e^{i\left(x_{2}+2 y_{2}\right)}, e^{i\left(2 x_{2}+3 y_{2}\right)}\right)$. This gives another equation which can be used to solve for k_{α} and k_{β}. Pulling back the same path of connections $\left.A_{1, t}\right|_{T_{1}}$ to T_{2} using the new gluing map We obtain

$$
a_{t}=\Leftrightarrow(t+1) i d x_{2} \Leftrightarrow\left(2 t+\frac{3}{2}\right) i d y_{2},
$$

which under the identification $\mathcal{A}_{\mathrm{nf}}\left(T_{2}\right) \cong \mathbb{R}^{2}$ is the line segment from $\left(1, \frac{3}{2}\right)$ to $\left(2, \frac{7}{2}\right)$. We define the path B_{t} in $\mathcal{A}_{\text {nf }}\left(T_{2}\right)$ by first following the path $\alpha \beta E_{\beta}$ from $\alpha \beta c_{0}$ to $\alpha \beta^{2} c_{0} \Gamma$ then $\alpha \beta^{2} E_{\beta}$ from $\alpha \beta^{2} c_{0}$ to $\alpha \beta^{3} c_{0} \Gamma$ then $\alpha \beta^{3} E_{\alpha}$ from $\alpha \beta^{3} c_{0}$ to $\alpha \beta^{3} \alpha c_{0}=\alpha \beta^{2} \gamma^{2} \alpha \beta c_{0}$ (the last equality is by the relation $[\alpha, \beta]=\gamma^{-2}$).

So ΓB_{t} is a path in $\mathcal{A}_{\mathrm{nf}}\left(Y_{2}\right)$ from $\alpha \beta c_{0}$ to $\alpha \beta^{2} \gamma^{2}\left(\alpha \beta c_{0}\right)$ with the property that $Q\left(B_{t}\right)$ is homotopic rel endpoints to the straight line from $\left(1, \frac{3}{2}\right)$ to $\left(2, \frac{7}{2}\right)$ in $\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$. Hence Γ as before Γ define a path $A_{2, t}$ in $\mathcal{A}_{\mathrm{nf}}\left(Y_{2}\right)$ which is homotopic rel endpoints to B_{t} in $Q^{-1}\left(\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}\right)$ and has the property that $Q\left(A_{2, t}\right)=\left(1+t, \frac{3}{2}+2 t\right)$. Note that $S F\left(A_{2, t} ; Y_{2} ; P^{+}\right)=k_{\alpha}+2 k_{\beta}$ while Γ as before $\Gamma S\left(A_{1, t} ; Y_{1} ; P^{+}\right)=k_{\alpha}$. Gluing together $A_{1, t}$ on Y_{1} and $A_{2, t}$ on $Y_{2} \Gamma$ we obtain a path A_{t} of connections on $Y_{1} \cup Y_{2}$. Note that $A_{1}=g A_{0} \Gamma$ where g is the union of α on Y_{1} and $\alpha \beta^{2} \gamma^{2}$ on Y_{2}. Since $\operatorname{deg}(g)=\operatorname{deg}(\alpha)+\operatorname{deg}\left(\alpha \beta^{2} \gamma^{2}\right)=0$ by Theorem 'A.'it follows that $S F\left(A_{t} ; Y_{1} \cup Y_{2}\right)=0$. On the other hand Lemma' ${ }^{-1} \mathbf{S t}_{1}$ says

$$
S F\left(A_{t} ; Y_{1} \cup Y_{2}\right)=S F\left(A_{1, t} ; Y_{1} ; P^{+}\right)+S F\left(A_{2, t} ; Y_{2} ; P^{+}\right)=2 k_{\alpha}+2 k_{\beta}
$$

which yields the equation $0=2 k_{\alpha}+2 k_{\beta}$.
Solving these two equations shows that $k_{\alpha}=2$ and $k_{\beta}=\Leftrightarrow 2$ and completes the proof of the theorem.

5. Dehn surgery techniques for computing gauge theoretic invariants

In this section Гwe apply the results from Sections 3 and 4 to develop formulas for a variety of gauge theoretic invariants of flat connections on Dehn surgeries $X=Y \cup_{T} Z$. Given a path of flat connections on Z whose initial point is the trivial connection and whose terminal point extends flatly over X Гwe extend this to a path A_{t} of connections on X such that $A_{0}=\Theta$ and A_{1} is flat. We then apply Theorem $\overline{3} 9$ and the results of Subsection ' $\bar{A} 2$ ' to derive a general formula for the \mathbb{C}^{2} spectral flow along this path. We also give a formula for the Chern-Simons invariant of A_{1} as an element in \mathbb{R} rather than \mathbb{R} / \mathbb{Z}. These formulas allow computations of the spectral flow and the Chern-Simons invariants in terms of easily computed homotopy invariant quantities associated to the path $\left(m_{t}, n_{t}\right) \subset \mathbb{R}^{2}$ introduced in Subsection illustrate how to use the formulas in practice We present detailed calculations for ± 1 surgery on the trefoil in Subsection

Combining the formula for the spectral flow with the one for the Chern-Simons invariant leads to a computation of the $S U(2)$ rho invariants of AtiyahГPatodi「and Singer in Subsection ${ }^{6} .5 .5$. Our ultimate aim is to develop methods for computing the correction term for the $S U(3)$ Casson invariant [会]. Summing the rho invariants yields the correction term provided the $S U(2)$ representation variety is regular as a subspace of the $S U(3)$ representation variety (Theorem '1. torus knots.
5.1. Extending paths of connections to X. Throughout this section Γ we denote by A, B, C, and a connections on X, Y, Z and $T \Gamma$ respectively. With respect to the manifold splitting $X=Y \cup_{T} Z$, we have $A=B \cup_{a} C$.

Our starting point is the following. We are given a path C_{t} of $S U(2)$ connections on Z in normal form on the collar which are flat for t near 0 and at $t=1$ (in all the examples considered in this paper ΓC_{t} is flat for all t) such that

1. $C_{0}=\Theta$, the trivial connection on Z.
2. C_{1} extends flatly over $X=Y \cup_{T} Z$.
3. For all $t>0$ the restriction of C_{t} to the boundary torus has nontrivial holonomy.
4. For all small positive $t \Gamma C_{t}$ is a nontrivial reducible connection.

Let $a_{t}=\left.C_{t}\right|_{T}$ be the restriction of C_{t} to the boundary. Then since C_{t} is in normal form Γ we have

$$
a_{t}=\Leftrightarrow m_{t} i d x \Leftrightarrow n_{t} i d y
$$

for $\left(m_{t}, n_{t}\right) \in \mathbb{R}^{2}$. Conditions 1-4 imply that $\left(m_{0}, n_{0}\right)=(0,0) \Gamma m_{1} \in \mathbb{Z} \Gamma\left(m_{t}, n_{t}\right) \in \mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$ for $t>0 \Gamma$ and $n_{t}=0$ for small positive t. Moreover Γ by reparameterizing C_{t} and gauge transforming if necessary P we can assume that conditions 1-3 of Subsection '3. $\overline{3}$. hold.

The path (m_{t}, n_{t}) will usually be described starting with a path of representations. The following proposition is helpful. This proposition is a relative version of the main theorem of $[16$

Proposition 5.1. Suppose $\rho:[0,1] \rightarrow \operatorname{Hom}\left(\pi_{1} Z, S U(2)\right)$ is a continuous path of representations with $\rho_{t}(\mu)=e^{2 \pi i m_{t}}$ and $\rho_{t}(\lambda)=e^{2 \pi i n_{t}}$. Then there exists a path of flat connections C_{t} on Z in normal form such that hol $C_{C_{t}}=\rho_{t}$ and $\left.C_{t}\right|_{T}=\Leftrightarrow m_{t} i d x \Leftrightarrow n_{t} i d y$. Moreover, if the initial point C_{0} is specified, then C_{t} is uniquely determined up to a gauge transformation homotopic to the identity for each $0<t \leq 1$.

Our next task is to construct a path B_{t} of connections on Y agreeing with C_{t} along the boundary T. The resulting path $A_{t}=B_{t} \cup_{a_{t}} C_{t}$ of connections on $X=Y \cup_{T} Z$ should satisfy conditions 1-3 of Subsection 3.4

We begin by defining three integers a, b, c in terms of the path $\left(m_{t}, n_{t}\right)$. First「set

$$
a=m_{1} \quad \text { and } \quad b=\left[n_{1}\right],
$$

where $[x]$ denotes the greatest integer less than or equal to x. Since C_{1} extends flatly over $X, \operatorname{hol}_{C_{1}}(\mu)=1$ hence $a \in \mathbb{Z}$.)

Choose $\delta>0$ as in condition 3 of Subsection $\overline{3}-4$ Define the $\operatorname{loop} \ell=p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \cdot p_{5}$ to be the composite of the following five paths in $\overline{\mathbb{R}}^{2} \Leftrightarrow \mathbb{Z}^{2}$:
(i) $p_{1}=\bar{\sigma}$ is the small quarter circle starting at $(0, \delta)$ and ending at $(\delta, 0) \Gamma$ i.e. Γ

$$
p_{1}(t)=\left(\delta \cos \left(\frac{(1-t) \pi}{2}\right), \delta \sin \left(\frac{(1-t) \pi}{2}\right)\right)
$$

(ii) $p_{2}=\eta$ is the path $\left(m_{t}, n_{t}\right)$ for $\delta \leq t \leq 1$.
(iii) p_{3} is the path from $\left(m_{1}, n_{1}\right)$ to $\left(m_{1}, n_{1} \Leftrightarrow b\right)$ which traverses the union of $|b|$ right hand semicircles of radius $\frac{1}{2}$. Setting $\varepsilon= \pm 1$ according to the sign of $b \Gamma$ then

$$
p_{3}=\bigcup_{k=1}^{|b|}\left\{\left.\left(m_{1}+\frac{1}{2} \cos t, n_{1} \Leftrightarrow \frac{\varepsilon}{2}(k+\sin t)\right) \right\rvert\, \Leftrightarrow \frac{\pi}{2} \leq t \leq \frac{\pi}{2}\right\} .
$$

(iv) p_{4} is the horizontal line segment from $\left(m_{1}, n_{1} \Leftrightarrow b\right)$ to $\left(0, n_{1} \Leftrightarrow b\right)$.
(v) p_{5} is the short vertical line segment from $\left(0, n_{1} \Leftrightarrow b\right)$ to $(0, \delta)$.

We now define the integer c in terms of the linking number of ℓ with the integer lattice $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$.

Definition 5.2. Given any oriented closed loop L in $\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2} \Gamma$ define the linking number $\operatorname{lk}\left(L, \mathbb{Z}^{2}\right)$ of L and \mathbb{Z}^{2} to be the algebraic number of lattice points enclosed by L Гnormalized so that if $L(t)=(\delta \cos t, \delta \sin t)$ for $t \in[0,2 \pi]$, then $\operatorname{lk}\left(L, \mathbb{Z}^{2}\right)=1$.

Using the loop ℓ constructed above We define an integer by setting

$$
c=\Leftrightarrow 2 \operatorname{lk}\left(\ell, \mathbb{Z}^{2}\right)
$$

Figure ' ${ }_{3}{ }^{3}$, shows how to compute the integers a, b and c from the graph of (m_{t}, n_{t}).
We can now define a path B_{t} of connections on Y.
Definition 5.3. Set $B_{t}=\Leftrightarrow(r)$ tidx for $0 \leq t \leq \delta$ Fwhere $q(r)$ is defined in equation ($\left.\overline{3}, \underline{6}\right)$.
Also set

$$
B_{1}=\alpha^{a} \beta^{b} \gamma^{c}\left(\Leftrightarrow\left(n_{1} \Leftrightarrow\left[n_{1}\right]\right) i d y\right)=\gamma^{c} \alpha^{a}\left(\Leftrightarrow n_{1} i d y\right)
$$

Notice that $\left.B_{1}\right|_{T}=a_{1}=\Leftrightarrow m_{1} i d x \Leftrightarrow n_{1} i d y$.
Finally C define B_{t} for $\delta<t \leq 1$ to be any path of connections in normal form interpolating from B_{δ} to B_{1} and satisfying $\left.B_{t}\right|_{T}=a_{t}$. Such a path exists since the space of connections on Y with a given normal form on the boundary is contractible.

Since the restrictions of B_{t} and C_{t} to the torus agree Γ and since they are in normal form Γ they can be glued together to form a path

$$
A_{t}=B_{t} \cup_{a_{t}} C_{t}
$$

Figure 3. The loop ℓ and numbers $a=4 \Gamma b=3$ and $c=\Leftrightarrow 2(1 \Leftrightarrow 9)=16$.
of connections on X. This path satisfies all the requirements of Subsection 3.4 and hence we can apply Theorem $\overline{3} 9.9$. Notice moreover that the flat connection B_{1} depends only on the homotopy class (rel endpoints) of the path (m_{t}, n_{t}), $t \in[\delta, 1]$ in $\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$.

5.2. Computation of the spectral flow.

Theorem 5.4. Let A_{t} be the path of connections on X constructed above and let a and b be the integers defined above for the path $\left(m_{t}, n_{t}\right)$ (so $a=m_{1}$ and $b=\left[n_{1}\right]$). Then

$$
\begin{equation*}
S F\left(A_{t} ; X\right)=S F\left(A_{\eta} ; Z ; P^{-}\right)+2(a \Leftrightarrow b) \Leftrightarrow 2 \tag{5.1}
\end{equation*}
$$

 of connections $\left.A_{\bar{\sigma} \cdot \eta}\right|_{Y}$ starts at the flat connection $\Leftrightarrow \delta i d y$ and ends at B_{1}. Its projects under Q to the path $\bar{\sigma} \cdot \eta$ in $\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$.

Recall that the path $\bar{\sigma}$ is the small quarter circle from $(0, \delta)$ to $(\delta, 0)$ and that η is just $\left(m_{t}, n_{t}\right)$ starting at $t=\delta$. Referring to the notation and results of Section homotopy class rel boundary of the path $\bar{\sigma} \cdot \eta$ in $\mathbb{R}^{2} \Leftrightarrow \mathbb{Z}^{2}$ uniquely determines a word w in α and β in the group G. This word uniquely specifies a path P in the Cayley graph Γ which we regard as a path of connections on the solid torus.

For example Γ the word $w=\alpha^{3} \beta \alpha^{-1}$ determines the path

$$
P=E_{\alpha} \cdot \alpha E_{\alpha} \cdot \alpha^{2} E_{\alpha} \cdot \alpha^{3} E_{\beta} \cdot \alpha^{3} \beta \alpha^{-1} E_{\alpha}^{-1},
$$

where E_{α}^{-1} means E_{α} traversed backwards. By construction Γ the endpoint of this path is $\alpha^{3} \beta \alpha^{-1} \cdot\left(\Leftrightarrow \frac{1}{2} i d y\right)$.

Given any word w in α and β, the associated path P goes from $\Leftrightarrow \frac{1}{2} i d y$ to $w \cdot\left(\Leftrightarrow \frac{1}{2} i d y\right)$. Thinking of w as an element of G and using Lemma'. that

$$
w=\alpha^{a} \beta^{b} \gamma^{c}
$$

where $a=m_{1}, b=\left[n_{1}\right]$ and c is defined relative to the path $\bar{\sigma} \cdot \eta$ as in Definition ${ }^{1} \overline{5} .{ }_{2}^{2}$. Thus Γ the terminal point of P_{w} is the flat connection $\alpha^{a} \beta^{b} \gamma^{c} \cdot\left(\Leftrightarrow \frac{1}{2} i d y\right)$.

We now construct a path \widetilde{P} by pre- and post-composing the given path P so the initial and terminal points agree with those of the path $\left.A_{\bar{\sigma} \cdot \eta}\right|_{Y}$. This is done by adding short segments of nontrivial Γ flat connections. This will not affect the spectral flow since any nontrivial representation $\rho: \pi_{1} Y \rightarrow S U(2)$ has $H^{0+1}\left(Y ; \mathbb{C}_{\rho}^{2}\right)=0$.

Consider first the line segment from $(0, \delta)$ to $\left(0, \frac{1}{2}\right)$ in \mathbb{R}^{2}. Since it misses the integer lattice Γ it lifts to a straight line from $\Leftrightarrow \delta i d y$ to $\Leftrightarrow \frac{1}{2} i d y$. This lift is a path of nontrivial flat connections on Y. Now consider the line segment from $\left(m_{1},\left[n_{1}\right]+\frac{1}{2}\right)$ to $\left(m_{1}, n_{1}\right)$. It also misses the integer lattice Chence it lifts to a straight line from $\alpha^{a} \beta^{b} \gamma^{c} \cdot\left(\Leftrightarrow \frac{1}{2} i d y\right) \Gamma$ the terminal point of P $\operatorname{\text {to}} \alpha^{a} \beta^{b} \gamma^{c} \cdot\left(\Leftrightarrow\left(n_{1} \Leftrightarrow\left[n_{1}\right]\right) i d y\right)$, the flat connection B_{1}. The second lift is also a path of nontrivial flat connections on Y.

Precomposing P by the first lift and post-composing by the second defines a path \widetilde{P} with the same \mathbb{C}^{2} spectral flow as P. Notice that the initial and terminal points of \widetilde{P} agree with those of $\left.A_{\bar{\sigma} \cdot \eta}\right|_{Y}$. By Theorem ${ }^{-1} \mathbf{A}_{1}^{\prime} \Gamma$ if $g \in G \Gamma$ then the spectral flow on Y with P^{+}boundary conditions along $g \cdot E_{\alpha}$ equals $\overline{2}$ and along $g \cdot E_{\beta}$ equals $\Leftrightarrow 2$. Thus the spectral flow along the path P is equal to $2(a \Leftrightarrow b)$. But since the spectral flow along \widetilde{P} is the same as that along $P \Gamma$
 and completes the proof.
5.3. The Chern-Simons invariants. The Chern-Simons function is defined on the space \mathcal{A}_{X} of connection 1-forms on a closed manifold X by

$$
\operatorname{cs}(A)=\frac{1}{8 \pi^{2}} \int_{X} \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

With this choice of normalization $\Gamma c s: \mathcal{A}_{X} \rightarrow \mathbb{R}$ satisfies $c s(g \cdot A)=c s(A) \Leftrightarrow \operatorname{deg} g$ for gauge transformations g (recall that $g \cdot A=g A g^{-1} \Leftrightarrow d g g^{-1}$). Since computing cs modulo \mathbb{Z} is not sufficient for the applications we have in mind Γ we work with connections rather than gauge orbits.

Using the same path $A_{t}=B_{t} \cup_{a_{t}} C_{t}$ of connections on $X=Y \cup_{T} Z$ as in Subsection ${ }^{1} 5$ we show how to compute $\operatorname{cs}\left(A_{1}\right) \in \mathbb{R}$. This timerthe initial data is a path of flat connections C_{t} on Z in normal form on the collar with C_{0} trivial and C_{1} extending flatly over X.

The restriction of C_{t} to the boundary determines path $\left(m_{t}, n_{t}\right)$ (i.e. $\left.\Gamma C_{t}\right|_{T}=\Leftrightarrow m_{t} i d x \Leftrightarrow$ $\left.n_{t} i d y\right)$ which was used in Subsection ${ }^{\mathbf{W}} \mathbf{1} \mathbf{1}$ it to construct a path A_{t} of connections on X starting at the trivial connection and ending at a flat connection A_{1}. Reparameterize the path (m_{t}, n_{t}) so that the coordinates are differentiable. (It can always be made piecewise analytic by the

Theorem 5.5. The Chern-Simons invariant of A_{1} is given by the formula

$$
c s\left(A_{1}\right)=\Leftrightarrow c+2 \int_{0}^{1} n \frac{d m}{d t} d t
$$

Proof. We follow the proof of Theorem 4.2 in [ind Tbeing careful not to lose integer information. Let $T(A)$ denote the transgressed second Chern form

$$
T(A)=\frac{1}{8 \pi^{2}} \operatorname{tr}\left(d A \wedge A+\frac{2}{3} A \wedge A \wedge A\right)
$$

Then

$$
c s\left(A_{1}\right)=\int_{Y} T\left(B_{1}\right)+\int_{Z} T\left(C_{1}\right)
$$

since $A_{1}=B_{1} \cup C_{1}$ on $X=Y \cup_{T} Z$. We compute these terms separately「using the following lemma.

Lemma 5.6. Let W be an oriented 3-manifold with oriented boundary $T=S^{1} \times S^{1}$. Let A_{t} be a path of flat connections in normal form on W. Assume that $\left.A_{t}\right|_{T}=\Leftrightarrow m_{t} i d x \Leftrightarrow n_{t} i d y$, where $\{d x, d y\}$ is an oriented basis of $H_{1}(T ; \mathbb{Z})$. Then

$$
\int_{W} T\left(A_{1}\right) \Leftrightarrow \int_{W} T\left(A_{0}\right)=\int_{0}^{1}\left(m \frac{d n}{d t} \Leftrightarrow \frac{d m}{d t} n\right) d t
$$

Proof. Orienting $I \times W$ and $I \times \partial W$ as products and using the outward normal first convention Гone sees that the boundary

$$
\partial(I \times W)=(\{1\} \times W) \Leftrightarrow(\{0\} \times W) \Leftrightarrow I \times \partial W
$$

The path of connections A_{t} on W can be viewed as a connection \mathbf{A} on $I \times W$. Then the curvature form $F^{\mathbf{A}}$ equals $d t \wedge \omega$ for some 1-form ω. Hence $c_{2}(\mathbf{A})=\frac{1}{4 \pi^{2}} \operatorname{tr}\left(F^{\mathbf{A}} \wedge F^{\mathbf{A}}\right)=0$.

Using Stokes' theorem as in [$1 \overline{1} \overline{9}]$ [one computes that

$$
\begin{equation*}
0=\int_{I \times W} c_{2}(\mathbf{A})=\int_{W} T\left(A_{1}\right) \Leftrightarrow T\left(A_{0}\right) \Leftrightarrow \int_{I \times \partial W} T(\mathbf{a}), \tag{5.2}
\end{equation*}
$$

where a denotes the connection $\Leftrightarrow m_{t} i d x \Leftrightarrow n_{t} i d y$ on $I \times \partial W$. Since $d \mathbf{a}=\Leftrightarrow \frac{d m}{d t} i d t d x \Leftrightarrow \frac{d n}{d t} i d t d y$, it follows that

$$
d \mathbf{a} \wedge \mathbf{a}=\left(\Leftrightarrow \frac{d m}{d t} n+m \frac{d n}{d t}\right) d x d y .
$$

Clearly $\mathbf{a} \wedge \mathbf{a} \wedge \mathbf{a}=0 \Gamma$ so

$$
T(\mathbf{a})=\frac{1}{4 \pi^{2}}\left(\Leftrightarrow \frac{d m}{d t} n+m \frac{d n}{d t}\right) d t d x d y .
$$

Hence

$$
\begin{aligned}
\int_{I \times \partial W} T(\mathbf{a}) & =\frac{1}{4 \pi^{2}} \int_{I \times \partial W}\left(\Leftrightarrow \frac{d m}{d t} n+m \frac{d n}{d t}\right) d t d x d y \\
& =\int_{0}^{1}\left(\Leftrightarrow \frac{d m}{d t} n+m \frac{d n}{d t}\right) d t
\end{aligned}
$$

 is a path of flat connections on Z starting at the trivial connection CLemma

$$
\int_{Z} T\left(C_{1}\right)=\Leftrightarrow \int_{0}^{1}\left(m \frac{d n}{d t} \Leftrightarrow \frac{d m}{d t} n\right) d t
$$

The sign change occurs because $\partial Z=\Leftrightarrow T$ as oriented manifolds.
Next we compute $\int_{Y} T\left(B_{1}\right)$. Recall from Definition ${ }^{5} \mathbf{3}_{1}$ that $B_{1}=\gamma^{c} \alpha^{a}\left(\Leftrightarrow n_{1} i d y\right)$. Since γ is a degree 1 gauge transformation supported in the interior of Y and $c s(g \cdot A)=c s(A) \Leftrightarrow d \operatorname{leg}(g) \Gamma$

$$
\int_{Y} T\left(B_{1}\right)=\Leftrightarrow c+\int_{Y} T\left(\alpha^{a}\left(\Leftrightarrow n_{1} i d y\right)\right)
$$

Consider the path of flat connections on $Y \Gamma \widetilde{B}_{t}=\alpha^{a}\left(\Leftrightarrow t n_{1} i d y\right), t \in[0,1]$. Then $\widetilde{B}_{0}=$ $\alpha^{a}(\Theta)=\Leftrightarrow d\left(\alpha^{a}\right)\left(\alpha^{a}\right)^{-1}$ and $\widetilde{B}_{1}=\alpha^{a}\left(\Leftrightarrow n_{1} i d y\right)$. The restriction of \widetilde{B}_{t} to the torus is $\left.\widetilde{B}_{t}\right|_{T}=$ $\tilde{\alpha}^{a}\left(\Leftrightarrow t n_{1} i d y\right)=\Leftrightarrow a i d x \Leftrightarrow t n_{1} i d y$. Recall that $a=m_{1}$. Applying Lemma ${ }^{2}, \underline{6}$ we conclude that

$$
\int_{Y} T\left(\alpha^{a}\left(\Leftrightarrow n_{1} i d y\right)\right)=m_{1} n_{1}+\int_{Y} T\left(\Leftrightarrow d\left(\alpha^{a}\right)\left(\alpha^{a}\right)^{-\mathbf{1}}\right)
$$

But $\int_{Y} T\left(\Leftrightarrow d\left(\alpha^{a}\right)\left(\alpha^{a}\right)^{-1}\right)=0$ since $\Leftrightarrow d\left(\alpha^{a}\right)\left(\alpha^{a}\right)^{-1}$ has no $d y$ component Γ thus

$$
c s\left(A_{1}\right)=\Leftrightarrow c+m_{1} n_{1} \Leftrightarrow \int_{0}^{1}\left(m \frac{d n}{d t} \Leftrightarrow \frac{d m}{d t} n\right) d t=\Leftrightarrow c+2 \int_{0}^{1} \frac{d m}{d t} n d t .
$$

5.4. Example: $\pm \mathbf{1}$ Dehn surgery on the trefoil. In this section Γ we use our previous results to determine the \mathbb{C}^{2} spectral flow and the Chern-Simons invariants for flat connections on the homology spheres obtained by ± 1 surgery on the right-hand trefoil K. More general results for surgeries on torus knots will be given in Section

The key to all these computations is a concrete description of the $S U(2)$ representation variety of the knot complement (see [25) . Let K be the right hand trefoil knot in S^{3} and let Z be the 3-manifold with boundary obtained by removing an open tubular neighborhood of K. Its fundamental group has presentation

$$
\pi_{1} Z=\left\langle x, y \mid x^{2}=y^{3}\right\rangle
$$

There are simple closed curves $\tilde{\mu}$ and $\tilde{\lambda}$ on $\partial Z=T$ intersecting transversely in one point called the meridian and longitude of the knot complement. We use the right hand rule to orient the pair $\tilde{\lambda}, \tilde{\mu}$ (see Subsection $\breve{6} 11$ for more details). In $\pi_{1} Z \Gamma \tilde{\mu}$ represents $x y^{-1}$ and $\tilde{\lambda}$ represents $x^{2}\left(x y^{-1}\right)^{-6}\left(\right.$ cf. equation $\left.\left(\overline{\hat{6}} 1^{\prime}\right)\right)$.

The representation variety $\mathfrak{R}_{S U(2)}(Z)$ can be described as the identification space of two closed intervals where the endpoints of the first interval are identified with two points in
 knot complement is a singular 1-manifold with 'T' type intersections called SU(2) bifurcation

Figure 4. $S U(2)$ representations of the trefoil.
Since $\tilde{\mu}$ normally generates $\pi_{1} Z$, any abelian representation $\beta: \pi_{1} Z \rightarrow S U(2)$ is uniquely determined by the image $\beta(\tilde{\mu})$. To each $t \in\left[0, \frac{1}{2}\right]$ we associate the abelian representation $\beta_{t}: \pi_{1} Z \rightarrow S U(2)$ with $\beta_{t}(\tilde{\mu})=e^{2 \pi i t}$. Thus Γ the interval [$\left.0, \frac{1}{2}\right]$ parameterizes the conjugacy classes of abelian or reducible representations.

The arc of nonabelian or irreducible conjugacy classes of representations can be parameterized by the open interval $(0,1)$ as follows. For $t \in[0,1] \Gamma$ let $\rho_{t}: \pi_{1} Z \rightarrow S U(2)$ be the representation with $\rho_{t}(x)=i$ and

$$
\rho_{t}(y)=\cos \left(\frac{\pi}{3}\right)+\sin \left(\frac{\pi}{3}\right)(\cos (t \pi) i+\sin (t \pi) j) .
$$

In [25] it is proved that every irreducible $S U(2)$ representation of $\pi_{1} Z$ is conjugate to one and only one ρ_{t} for some $t \in(0,1)$. The endpoints of ρ_{t} coincide with the reducible representations at $1 / 12$ and $5 / 12$.

Restriction to the boundary defines a map $\mathfrak{R}_{S U(2)}(Z) \rightarrow \mathfrak{R}_{S U(2)}(T)$. To apply Theorems
 $\mathfrak{R}_{S U(2)}(T)$ under the branched cover $f: \mathbb{R}^{2} \rightarrow \mathfrak{R}_{S U(2)}(T)$ of equation ($\left.\overline{3}, \overline{2} \overline{2}_{1}\right)$. It is important to notice that f depends on the surgery coefficients. Specifically Γf is defined in equation (h. relative to the the meridian and longitude of the solid torus Γ as opposed to the meridian and longitude of the knot complement. We denote the former by μ and λ and the latter by $\tilde{\mu}$ and $\tilde{\lambda}$. For the manifold X_{k} obtained by $\frac{1}{k}$ surgery on $K \Gamma$ we have $\mu=\tilde{\mu} \tilde{\lambda}^{k}$ and $\lambda=\tilde{\lambda}$.

Figure 5. Two flat connections extending over +1 surgery on the right hand trefoil
For the Poincare homology sphere (denoted here by X_{+1}) ГProposition $\overline{6} .8$ implies that one such lift is given by the curve (see Figure (10)

$$
R_{1}(t)=(1 \Leftrightarrow t)\left(\frac{1}{12}, 0\right)+t\left(\Leftrightarrow \frac{19}{12}, \Leftrightarrow 2\right), \quad 0 \leq t \leq 1 .
$$

All other lifts are obtained by translating R_{1} by integer pairs and/or reflecting it through the origin.

A representation $\rho: \pi_{1} Z \rightarrow S U(2)$ extends over X_{+1} if and only if $\rho(\mu)=1 \Gamma$ hence it follows that the irreducible representations of X_{+1} correspond to the points of R_{1} where the first coordinate is an integer. Figure shows two such points which represent two flat connections A_{1} and A_{2}. Let $\left(m_{t}, n_{t}\right)$ be the path described as the composition of the horizontal line segment from $(0,0)$ to $\left(\frac{1}{12}, 0\right)$ with the path $R_{1}(s)$. Then A_{1} and A_{2} are the flat connections constructed as in Subsection wing the path (m_{t}, n_{t}) Гstopping on the R_{1} portion at $R_{1}(1 / 20)$ for A_{1} and at $R_{1}(13 / 20)$ for A_{2}.

Using the path $A_{\xi \cdot \eta}$ constructed from $\left(m_{t}, n_{t}\right)$ as in Subsections ${ }^{3} .4$ and the numbers a_{i}, b_{i}, c_{i} associated to A_{i} for $i=1,2$. We get that $a_{1}=\overline{-} \overline{0}, b_{1}=\overline{=} \overline{1} \Gamma$ and $c_{1}=0$. Similarly $a_{2}=\Leftrightarrow 1, b_{2}=\Leftrightarrow 2$ Гand $c_{2}=2$.
 equation $\left(\overline{5} \overline{1} \overline{1}_{1}^{\prime}\right) \Gamma S F\left(\Theta, A_{i} ; \overline{X_{+1}}\right)=2\left(a_{i} \Leftrightarrow b_{i}\right) \Leftrightarrow 2 \Gamma$ we conclude that $S F\left(\theta, A_{i} ; X_{+1}\right)=0$ for $i=1,2$. One can also compute the integral term $2 \int m^{\prime} n$ arising in Theorem ${ }^{5} 5.5$ getting $2 \int m^{\prime} n=\frac{1}{120}$ for A_{1} and $2 \int m^{\prime} n=\frac{169}{120}$ for A_{2}. These results are summarized in the following table.

	a	b	c	$2 \int m^{\prime} n$	$c s(A)$	$S F(\Theta, A)$
A_{1}	0	$\Leftrightarrow 1$	0	$\frac{1}{120}$	$\frac{1}{120}$	0
A_{2}	$\Leftrightarrow 1$	$\Leftrightarrow 2$	2	$\frac{169}{120}$	$\Leftrightarrow \frac{71}{120}$	0

TABLE 1. $X_{+1}=+1$ surgery on the right hand trefoil
Similar computations for the manifold X_{-1} are summarized in Table HereГProposition ' $\overline{6} .{ }^{-1}$ implies that the lift of the image of $\mathfrak{R}_{S U(2)}^{*}(Z) \rightarrow \mathfrak{R}_{S U(2)}(T)$ under $f: \mathbb{R}^{2} \rightarrow \mathfrak{R}_{S U(2)}(T)$ is given by the curve

$$
R_{1}(t)=(1 \Leftrightarrow t)\left(\frac{1}{12}, 0\right)+t\left(\frac{29}{12}, \Leftrightarrow 2\right), \quad 0 \leq t \leq 1 .
$$

As before the numbers a, b and c and the integral term $2 \int m^{\prime} n$ can be easily computed from Figure ' ${ }^{6}$.'

Figure 6. Two flat connections extending over $\Leftrightarrow 1$ surgery on the right hand trefoil

	a	b	c	$2 \int m^{\prime} n$	$c s(A)$	$S F(\Theta, A)$
A_{1}	1	$\Leftrightarrow 1$	$\Leftrightarrow 2$	$\Leftrightarrow \frac{121}{168}$	$\frac{215}{168}$	2
A_{2}	2	$\Leftrightarrow 2$	$\Leftrightarrow 6$	$\Leftrightarrow \frac{529}{168}$	$\frac{479}{168}$	6

TABLE 2. $X_{-1}=\Leftrightarrow 1$ surgery on the right hand trefoil
Using these results Γ we will determine the rho invariants of flat connections on X_{+1} and X_{-1} in Subsection
5.5. The rho invariants. In this section 「we present explicit formulas for the rho invariants based on our previous results. We first make clear which rho invariants we are computing. Following [with \mathbb{C}^{2} coefficients:

$$
D_{A}: \Omega_{X}^{0+2} \otimes \mathbb{C}^{2} \rightarrow \Omega_{X}^{0+2} \otimes \mathbb{C}^{2}
$$

The eta invariant of $D_{A} \Gamma$ denoted here by $\eta_{A}(0) \Gamma$ is the spectral invariant regularizing the signature; it is the analytic continuation to $s=0$ of

$$
\eta_{A}(s)=\sum_{\lambda \neq 0} \frac{\operatorname{sign}(\lambda)}{|\lambda|^{s}} ;
$$

where the sum is over nonzero eigenvalues λ of D_{A}.
If A is a flat connection Γ then AtiyahГPatodiГand Singer show that the difference

$$
\varrho_{X}(A)=\eta_{A}(0) \Leftrightarrow \eta_{\Theta}(0)
$$

is a real number which is independent of the metric. Moreover $\Gamma \varrho_{X}(A)$ is gauge invariant and hence defines a function $\varrho_{X}: \mathfrak{M}_{S U(2)}(X) \rightarrow \mathbb{R}$ on the flat $S U(2)$ moduli space of X. Using the holonomy map to identify flat connections A and representations $\alpha: \pi_{1} X \rightarrow S U(2) \Gamma$ the rho invariant can therefore also be viewed as a real-valued function on $\mathfrak{R}_{S U(2)}(X)$.

The rho invariants considered in this paper are those associated to the canonical representation of $S U(2)$ on \mathbb{C}^{2} Гnot the adjoint representation on $s u(2)$ which is more commonly studied in Donaldson and Floer theory. In the latter situation F Fintushel and Stern developed a technique for computing the (adjoint) rho invariants of $S U(2)$ representations of Seifert-fibered spaces by extending them over the mapping cylinder of the Seifert fibration Γ viewed as a 4-dimensional orbifold [17]. This method does not apply to our situation because generic fibers do not act trivially in the canonical representation as they do in the adjoint representation.

Theorem 5.7. Suppose C_{t} is a path of flat connections in normal form on Z starting at the trivial connection and ending at a connection with trivial holonomy around μ. Let A_{1} be any flat connection $X=Y \cup_{T} Z$ which extends C_{1}. Then the rho invariant of A_{1} is given by the formula

$$
\begin{equation*}
\varrho_{X}\left(A_{1}\right)=2 S F\left(A_{\eta}(t) ; Z ; P^{-}\right)+4(a \Leftrightarrow b+c) \Leftrightarrow 2 \Leftrightarrow \operatorname{dim}\left(\operatorname{ker} D_{A_{1}}\right) \Leftrightarrow 8 \int m^{\prime} n \tag{5.3}
\end{equation*}
$$

where $C_{t} \mid T=\Leftrightarrow m_{t} i d x \Leftrightarrow n_{t} i d y$, and a, b, c are the integer homotopy invariants of the path (m_{t}, n_{t}) defined in Subsection is. İ'.

Proof. The rho invariant is gauge invariant so every flat connection on X gauge equivalent to A_{1} has the same rho invariant. Thus we are free to use the path A_{t} of connections constructed in Subsection ${ }^{5} .1$ In from the path C_{t} to compute $\varrho_{X}\left(A_{1}\right)$.

A standard application of the Atiyah-Patodi-Singer index theorem shows that

$$
\begin{equation*}
S F\left(A_{t} ; X\right)=2 \operatorname{cs}\left(A_{1}\right)+\frac{1}{2}\left(\varrho_{X}\left(A_{1}\right) \Leftrightarrow \operatorname{dim}\left(\operatorname{ker} D_{\Theta}\right)+\operatorname{dim}\left(\operatorname{ker} D_{A_{1}}\right)\right) . \tag{5.4}
\end{equation*}
$$

This follows just as in the appendix to $[2 \overline{2} \bar{i}]$ [keeping in mind that we are using the $(\Leftrightarrow \varepsilon, \Leftrightarrow c)$ convention to compute spectral flow here whereas in that paper Γ the $(\Leftrightarrow \varepsilon, \varepsilon)$-convention is used (hence the sign change for the term $\operatorname{dim}\left(\operatorname{ker} D_{A_{1}}\right)$).

Recall that ker $D_{\Theta}=H^{0+1}\left(X ; \mathbb{C}^{2}\right) \cong \mathbb{C}^{2}$. Using Theorem

In general Γ from equation $\left({ }^{\prime}=\mathbf{4} .1\right) \Gamma$ if $\operatorname{dim}\left(\operatorname{ker} D_{A}\right)=0 \Gamma$ then

$$
\begin{equation*}
\varrho_{X}(A)=2 S F(\Theta, A ; X) \Leftrightarrow 4 \operatorname{cs}(A)+2 . \tag{5.5}
\end{equation*}
$$

By Theorem $\overline{6} \cdot 2$ This holds for every nontrivial flat connection A over a homology sphere X obtained by surgery on a $(2, q)$ torus knot.
Example 5.8. Suppose K is the right hand trefoil and consider the two sets of connections on $X_{ \pm 1}$ Гthe homology spheres obtained by ± 1 surgery on K. Then Γ referring to Tables 1 and 2 and utilizing equation (5.5). 5 we conclude that:

Case 1: For +1 surgery on K Гwe have $\varrho_{X_{+1}}\left(A_{1}\right)=59 / 30$ and $\varrho_{X_{+1}}\left(A_{2}\right)=131 / 30$.
Case 2: For $\Leftrightarrow 1$ surgery on K Гwe have $\varrho_{X_{-1}}\left(A_{1}\right)=37 / 42$ and $\varrho_{X_{-1}}\left(A_{2}\right)=109 / 42$.
Notice that while the quantities in Tables 1 and 2 depend on the choice of gauge representatives A_{1} and $A_{2} \Gamma$ the rho invariants do not. We shall extend these computations considerably「first to all homology spheres obtained by Dehn surgery on the trefoil (Theorems ${ }^{\prime} \overline{6} .9$ ' and $\left.{ }^{\prime} \overline{6} \cdot 100^{\prime}\right)$ and later to all homology spheres obtained by surgery on a $(2, q)$ torus

5.6. The $\mathbf{S U}(3)$ Casson invariant. In [$\left[\begin{array}{l}1 \\ 1\end{array}\right]$ an invariant of homology 3 -spheres X was defined by counting Γ with sign Γ the number of irreducible $S U(3)$ representations of $\pi_{1}(X)$ and subtracting a correction term. The correction term is given by a sum of \mathbb{C}^{2} spectral flows and Chern-Simons invariants applied to flat $S U(2)$ connections. One must typically incorporate the effect of perturbations on both of these sums Γ but in certain fortuitous cases the flat moduli space $\mathfrak{M}_{S U(3)}(X)$ is regular and no perturbations are needed. The aim of this subsection is to give a simple formula for the correction term in this special case.

Definition 5.9. The $S U(3)$ Casson invariant for a homology sphere X is given by the difference

$$
\lambda_{S U(3)}(X)=\lambda_{S U(3)}^{\prime}(X)+\lambda_{S U(3)}^{\prime \prime}(X)
$$

where

$$
\begin{aligned}
& \lambda_{S U(3)}^{\prime}(X)=\sum_{[A] \in \mathfrak{M}_{S U(3), h}^{*}(X)}(\Leftrightarrow 1)^{S F_{s u(3)}(\Theta, A ; X)} \\
& \lambda_{S U(3)}^{\prime \prime}(X)=\sum_{[A] \in \mathfrak{M}_{S U(2), h}^{*}(X)}(\Leftrightarrow 1)^{S F_{s u(2)}(\Theta, A ; X)}(S F(\theta, A ; X) \Leftrightarrow 2 c s(\widehat{A})+1) .
\end{aligned}
$$

These are the first and second sums Γ respectively of Definition 5.2 in [$\left[\begin{array}{l}\text { B }\end{array}\right]$. All the spectral flows are taken with respect to the twisted odd signature operator D_{A} (this was denoted K_{A} in $\left[\boldsymbol{B}_{-1}\right]$). The notation $S F(\Theta, A ; X)$ refers to the \mathbb{C}^{2}-spectral flow i.e. Γ taking $S U(2)$ acting on \mathbb{C}^{2} (and counting complex eigenvectors) just as above. (The analogous term $S F_{\mathfrak{h}^{\perp}}(\theta, A)$ in Definition 5.2 of of the second sum in Definition 5.2 of $\left[\overline{W e n}_{1}^{1}\right]$.). The notation $S F_{s u(3)}$ and $S F_{s u(2)}$ refers to the adjoint representations Γ i.e. $\Gamma S U(3)$ acting on $s u(3)$ and $S U(2)$ acting on $s u(2)$ by the adjoint
representation（and count real eigenvectors）．The function h is a perturbation function used to perturb the flatness equations．Then $\mathfrak{M}_{S U(3), h}^{*}(X)$ denotes the moduli space of irreducible h－perturbed－flat $S U(3)$ connections on $X \Gamma$ and similarly $\mathfrak{M}_{S U(2), h}^{*}(X)$ denotes the moduli space of irreducible h－perturbed－flat $S U(2)$ connections on X ．

Notice that $\lambda_{S U(3)}$ is independent of the underlying orientation on the homology sphere． This is individually true for $\lambda_{S U(3)}^{\prime}$ and $\lambda_{S U(3)}^{\prime \prime}$ Tnamely $\lambda_{S U(3)}^{\prime}(\Leftrightarrow X)=\lambda_{S U(3)}^{\prime}(X)$ and $\lambda_{S U(3)}^{\prime \prime}(\Leftrightarrow X)=$ $\lambda_{S U(3)}^{\prime \prime}(X)$ ．

Neither $\lambda_{S U(3)}^{\prime}(X)$ nor $\lambda_{S U(3)}^{\prime \prime}(X)$ is generally independent of the choice of perturbation $h \Gamma$ which must be small and chosen so that $\mathfrak{M}_{S U(3), h}(X)$ is regular as in Definition 3.8 of［解． To evaluate the correction term $\lambda_{S U(3)}^{\prime \prime}(X)$ Гone must also choose a representative A for each $[A] \in \mathfrak{M}_{S U(2), h}^{*}(X)$ along with a nearby flat Treducible connection \hat{A} ．

In certain cases Γ including surgeries on $(2, q)$ torus knots Γ the $S U(3)$ moduli space is regular．In this case the invariant $\lambda_{S U(3)}$ is calculable without perturbing．In fact Γ whenever the $S U(2)$ moduli space is regular according to Definition 3.8 of［⿹\zh26灬ll Fone can compute the correction term $\lambda_{S U(3)}^{\prime \prime}(X)$ in terms of $S U(2)$ rho invariants．
Theorem 5．10．Suppose X is a homology sphere with the property that every irreducible flat $S U(2)$ connection A has $H^{1}\left(X ; s u(2)_{A}\right)=0$ and $H^{1}\left(X ; \mathbb{C}_{A}^{2}\right)=0$ ．The first condition ensures that the moduli space $\mathfrak{M}_{S U(2)}^{*}(X)$ is a compact， 0 －dimensional manifold，and the second implies that the points in $\mathfrak{M}_{S U(2)}^{*}(X)$ are not limits of arcs of irreducible flat $S U(3)$ connections．Then the correction term can be written as a sum of rho invariants，specifically

$$
\begin{equation*}
\lambda_{S U(3)}^{\prime \prime}(X)=\sum_{[A] \in \mathfrak{M}_{S U(2)}^{*}(X)}(\Leftrightarrow 1)^{S F_{s u(2)}(\Theta, A ; X)} \varrho_{X}(A) / 2 . \tag{5.6}
\end{equation*}
$$

Proof．This follows by taking $\widehat{A}=A$ in Definition ${ }_{6}^{1} 9.1$（which is allowed since $\mathfrak{M}_{S U(2)}^{*}(X)$ is regular as a subspace of $\mathfrak{M}_{S U(3)}(X)$ by hypothesis）and making a direct comparison with equation（5．5．51）．

In the next two examples Γ we present computations of the $S U(3)$ Casson invariant for ± 1 surgery on the trefoil．In addition to the fact that the $S U(3)$ moduli space is regular Γ these cases avoid numerous other technical difficulties．For example Γ the sign of equation （ $\left.\bar{b}_{6} . \bar{\sigma}_{1}\right)$ is constant for these manifolds．This goes back to a result of Fintushel and Stern which identifies the parity of the $s u(2)$ spectral flow of irreducible flat $S U(2)$ connections
 know from［ $[4]$ that the $s u(3)$ spectral flow is even 10 which implies that $\lambda_{S U(3)}^{\prime}\left(X_{ \pm 1}\right)$ is given by simply counting the irreducible $S U(3)$ representations of $\pi_{1}\left(X_{ \pm 1}\right)$ ．Moreover for $\pi_{1}\left(X_{ \pm 1}\right) \Gamma$ all the important irreducible $S U(3)$ representations can be described in terms of representations of finite groups．

We compute the $S U(3)$ Casson invariant $\lambda_{S U(3)}$ for ± 1 surgery on the right hand trefoil． Recall that（at least as unoriented manifolds）$X_{+1} \cong \Sigma(2,3,5)$ and $X_{-1} \cong \Sigma(2,3,7)$ ．

Example 5．11．Consider first X_{+1} ．Case 1 of Example shows that the moduli space of flat $S U(2)$ connections on X_{+1} is given by $\mathfrak{M}_{S U(2)}\left(X_{+1}\right)=\left\{[\Theta],\left[A_{1}\right],\left[A_{2}\right]\right\}$ with $\varrho_{X_{+1}}\left(A_{1}\right)=$ $59 / 30$ and $\varrho_{X_{+1}}\left(A_{2}\right)=131 / 30$ ．

For any irreducible flat connection A on $X_{+1} \Gamma S F_{s u(2)}\left(\Theta, A ; X_{+1}\right)$ is odd (see Theorem $\overline{6}$. Thus Theorem 10 implies

$$
\lambda_{S U(3)}^{\prime \prime}\left(X_{+1}\right)=\Leftrightarrow \frac{1}{2}\left(\varrho_{X_{+1}}\left(A_{1}\right)+\varrho_{X_{+1}}\left(A_{2}\right)\right)=\Leftrightarrow 19 / 6 .
$$

Since $\pi_{1}\left(X_{+1}\right)$ is the binary icosahedral group (which is finite) Γ it is well-known that it has two irreducible rank 3 representations. (Setting $\alpha_{i}=$ hol $_{A_{i}}$ for $i=1,2 \Gamma$ these are the $S U(3)$ representations obtained by composing $\alpha_{i}: \pi_{1}\left(X_{+1}\right) \rightarrow S U(2)$ with the sequence of maps $S U(2) \rightarrow S O(3) \hookrightarrow S U(3)$ given by the standard projection followed by the natural inclusion.) Proposition 5.1 of $\left[\begin{array}{l}1\end{array}\right]$ shows that the adjoint $s u(3)$ spectral flow of A_{1} and A_{2} is evenThence $\lambda_{S U(3)}^{\prime}\left(X_{+1}\right)=2$. Hence

$$
\lambda_{S U(3)}\left(X_{+1}\right)=\lambda_{S U(3)}^{\prime}\left(X_{+1}\right)+\lambda_{S U(3)}^{\prime \prime}\left(X_{+1}\right)=2 \Leftrightarrow 19 / 6=\Leftrightarrow 7 / 6 .
$$

Example 5.12. Now consider X_{-1}. Case 2 of Example shows that the moduli space of $S U(2)$ connections on X_{-1} is given by $\mathfrak{M}_{S U(2)}\left(X_{-1}\right)=\left\{[\Theta],\left[A_{1}\right],\left[A_{2}\right]\right\}$ with $\varrho_{X_{-1}}\left(A_{1}\right)=$ $37 / 42$ and $\varrho_{X_{-1}}\left(A_{2}\right)=109 / 42$. In this case $\Gamma S F_{s u(2)}\left(\Theta, A ; M_{-1}\right)$ is even for all $[A] \in \mathfrak{M}_{S U(2)}^{*}\left(X_{-1}\right)$. Theorem

$$
\begin{equation*}
\lambda_{S U(3)}^{\prime \prime}\left(X_{-1}\right)=\frac{1}{2}\left(\varrho_{X_{-1}}\left(A_{1}\right)+\varrho_{X_{-1}}\left(A_{2}\right)\right)=73 / 42 . \tag{5.7}
\end{equation*}
$$

In [4] it is shown that there are four irreducible $S U(3)$ representations of $\pi_{1}\left(X_{-1}\right)$. Two of these are obtained from the $S U(2)$ representations $\alpha_{i}=h_{o l} l_{A_{i}}$ as in the previous example and the other two are induced by representations of the quotient $P S L\left(2, \mathbb{F}_{7}\right) \Gamma$ which is a finite group of order 168 Гas follows. Comparing the group presentations

$$
\begin{aligned}
\pi_{1}\left(X_{-1}\right) & \left.=\langle x, y, z, h| h \text { central, } x^{2} h=y^{3} h^{-1}=z^{5} h^{-1}=x y z=1\right\rangle \\
P S L\left(2, \mathbb{F}_{7}\right) & =\left\langle x, y, z \mid x^{2}=y^{3}=z^{7}=x y z=[y, x]^{4}=1\right\rangle
\end{aligned}
$$

it is clear that $\operatorname{PSL}\left(2, \mathbb{F}_{7}\right)$ is the quotient of $\pi_{1}\left(X_{-1}\right)$ by the normal subgroup $\left\langle h,[y, x]^{4}\right\rangle$. It is well-known that $\operatorname{PSL}\left(2, \mathbb{F}_{7}\right)$ has precisely two irreducible $S U(3)$ representations (see p. 96 of $[111)$ Thus the two remaining $S U(3)$ representations of $\pi_{1}\left(X_{-1}\right)$ are obtained from $\operatorname{PSL}\left(2, \mathbb{F}_{7}\right)$ by pullback. As before Γ Proposition 5.1 of $[4 i=1$ implies that the adjoint $s u(3)$ spectral flow of each of the four irreducible $S U(3)$ representations is even. Hence $\lambda_{S U(3)}^{\prime}\left(X_{-1}\right)=4$. Using this and equation (' $\left.{ }^{\prime} \bar{V}_{1}^{\prime}\right) \Gamma$ it follows that

$$
\lambda_{S U(3)}\left(X_{-1}\right)=4+73 / 42=241 / 42 .
$$

Since the $S U(3)$ Casson invariant is unchanged by a change of orientation Γ we conclude that $\lambda_{S U(3)}(\Sigma(2,3,5))=\Leftrightarrow 7 / 6$ and $\lambda_{S U(3)}(\Sigma(2,3,7))=241 / 42$.

6. Computations for torus knots

Given a 3-manifold X and a flat $S U(2)$ connection A on it Γ Theorems 5 mine the spectral flow and the Chern-Simons invariant of A provided there exists a $\overline{-\quad}$ knot K in X so that A is connected to the trivial connection Θ by a path of flat connections on the knot complement $Z=X \Leftrightarrow N(K)$. In this section we apply our methods to perform explicit computations for homology spheres obtained by surgery on a torus knot. Computing the spectral flow on the complement of a torus knot is not hard Γ and it is especially
straightforward for $(2, q)$ torus knot complements (see Theorem $\left.{ }^{\prime} \overline{6} \cdot \overline{1} \overline{2}\right)$. In this way $\bar{\prime}$ we reduce the computation of all the gauge theoretic invariants Γ including the rho invariants Γ to straightforward computations of the integers a, b, c Гand the integral $2 \int n m^{\prime}$.

Our aim is to compute the $S U(3)$ Casson invariant for surgeries on torus knots. In the general case Cone needs to consider perturbed flat connections since the $S U(2)$ representation variety may not be cut out transversely as a subspace of the $S U(3)$ representation variety. For surgeries on $(2, q)$ torus knots Γ transversality holds so one can compute the $S U(3)$ Casson invariant without perturbing. As in Theorem '5.10 Γ this has the happy consequence that the correction term $\lambda_{S U(3)}^{\prime \prime}$ can be expressed entirely in terms of the rho invariants. Using this approach Γ we compute $\lambda_{S U(3)}^{\prime \prime}$ for homology spheres obtained by surgery on a $(2, q)$ torus knot. Coupling these results with the computations of $\lambda_{S U(3)}^{\prime}$ in [1A1/ Γ we calculate $\lambda_{S U(3)}$ for surgeries on $K(2, q)$ for various q and use this data to conclude that $\lambda_{S U(3)}$ is not a finite type invariant of order 6 .
6.1. Twisted cohomology of torus knot complements. We begin with a discussion of orientations and surgery conventions. Any knot K in S^{3} induces a decomposition of S^{3} into two pieces Γ a tubular neighborhood $N(K)$ and the knot exterior $Z=S^{3} \Leftrightarrow N(K)$. This decomposition uniquely determines two isotopy classes of unoriented simple closed curves on the separating torus: $\tilde{\mu}$ is a curve which bounds a disc in $N(K)$ and $\tilde{\lambda}$ is a curve that bounds a surface in Z. These can be represented by smooth curves intersecting transversely in one point. Orient the pair $\{\tilde{\mu}, \tilde{\lambda}\}$ so that $\tilde{\mu} \cdot \tilde{\lambda}=1$ with the outward normal first boundary orientation on $T=\partial(N(K))$.

For any integer k Cconsider the homology sphere $X=Y \cup_{T} Z$ obtained by performing $\frac{1}{k}$ surgery on K. This is the 3 -manifold obtained by gluing the solid torus $Y=D^{2} \times S^{1}$ to Z using a diffeomorphism of their boundaries which takes $\partial D^{2} \times\{1\}$ to $\tilde{\mu} \tilde{\lambda}^{k}$ and $\{1\} \times S^{1}$ to $\tilde{\lambda}$. The curves

$$
\mu=\tilde{\mu} \tilde{\lambda}^{k}, \lambda=\tilde{\lambda}
$$

are called the meridian and longitude of the Dehn filling Y. Notice that μ does not represent the usual meridian for the trefoil as a knot in S^{3} 「but rather the meridian for the knot in X which is the core of the Dehn filling.

Now considerCfor p and q relatively prime and positive The (p, q) torus knot $K(p, q)$. This is the knot $K:[0,2 \pi] \rightarrow \mathbb{R}^{3}$ given by $K(t)=((2+\cos q t) \cos p t,(2+\cos q t) \sin p t, \Leftrightarrow \sin q t)$. The restriction that p and q be positive is not serious; all the methods presented here are equally valid if either p or q is negative. Notice however that the result of $\frac{1}{k}$ surgery on $K(p, q)$ is diffeomorphic to that of $\Leftrightarrow \frac{1}{k}$ surgery on $K(p, \Leftrightarrow q)$ by an orientation-reversing diffeomorphism. Since the gauge theoretic invariants change in a predictable way under reversal of orientations Γ there is no loss in generality in assuming that p and q are positive.

The exterior $Z=S^{3} \Leftrightarrow N(K)$ of the (p, q) torus knot K has fundamental group

$$
\pi_{1} Z=\left\langle x, y \mid x^{p}=y^{q}\right\rangle
$$

Choose $r, s \in \mathbb{Z}$ with the property that $p r+q s=1$. Then the curves $\tilde{\mu}$ and $\tilde{\lambda}$ for $K(p, q)$ are represented in $\pi_{1} Z$ as

$$
\begin{equation*}
\tilde{\mu}=x^{s} y^{r} \quad \text { and } \quad \tilde{\lambda}=x^{p}(\tilde{\mu})^{-p q} \tag{6.1}
\end{equation*}
$$

For example Γ for the $(2, q)$ torus knot Γ one can take $s=1$ and $r=(1 \Leftrightarrow q) / 2$. Then $\tilde{\mu}=x y^{(1-q) / 2}$ and $\tilde{\lambda}=x^{2}(\tilde{\mu})^{-2 q}$.

Theorem 1 of [20 torus knot groups. There it is shown that for a (p, q) torus $\operatorname{knot} \Gamma \Re_{S U(2)}(Z)$ is a connected Γ 1-dimensional singular manifold (smooth except for ' T ' type intersections Γ called $S U(2)$ bifurcation points Γ discussed below.) Figures ${ }_{-1}^{-1} \Gamma$ varieties for several different torus knots.

Since $\tilde{\mu}$ normally generates $\pi_{1} Z$, any reducible representation $\beta: \pi_{1} Z \rightarrow S U(2)$ is uniquely determined by $\beta(\tilde{\mu})$. Throughout this section Γ we adopt the notation where β_{s} for $s \in\left[0, \frac{1}{2}\right]$ refers to the reducible representation of $\pi_{1} Z$ which is uniquely determined up to conjugacy by the requirement that $\beta_{s}(\tilde{\mu})=e^{2 \pi i s}$. Since $\tilde{\lambda}$ lies in the commutator subgroup of $\pi_{1} Z$ (it bounds a Seifert surface) the reducible representation β_{s} sends λ to 1 so $\beta_{s}(\tilde{\mu})=\beta_{s}(\mu)$.

The space $\mathfrak{R}_{S U(2)}^{*}(Z)$ of irreducible representations consists of $(p \Leftrightarrow 1)(q \Leftrightarrow 1) / 2$ open arcs Γ the ends of which limit to distinct reducible representations. Thus $\Gamma \Re_{S U(2)}(Z)$ is the space obtained by identifying the endpoints of a collection of closed arcs with distinct interior points of the interval $\left[0, \frac{1}{2}\right]$. It follows that $\mathfrak{R}_{S U(2)}(Z)$ is path connected and any flat connection A on a homology sphere obtained from surgery on a torus knot can be connected to the trivial connection Θ by a path of connections which are flat on Z and which satisfy conditions 1-3 of Subsection '3.

The next result is crucial to computations of $S F\left(A_{\eta}(t) ; Z ; P^{-}\right)$for torus knot complements. It identifies the kernel of D_{A} with P^{-}boundary conditions at any flat connection on Z.

Theorem 6.1. Let Z be the exterior of any (p, q) torus knot and suppose $\alpha: \pi_{1}(Z) \rightarrow S U(2)$ is a representation, defining a local coefficient system in \mathbb{C}^{2}.
(i) If α is trivial, then $H^{0+1}\left(Z, \partial Z ; \mathbb{C}_{\alpha}^{2}\right)=0$.
(ii) If α is nontrivial, then $H^{0}\left(Z, \partial Z ; \mathbb{C}_{\alpha}^{2}\right)=H^{0}\left(Z ; \mathbb{C}_{\alpha}^{2}\right)=0$ and

$$
H^{1}\left(Z, \partial Z ; \mathbb{C}_{\alpha}^{2}\right)=H^{1}\left(Z ; \mathbb{C}_{\alpha}^{2}\right)= \begin{cases}\mathbb{C}^{2} & \text { if } \alpha\left(x^{p}\right)=1 \text { and } \alpha(x) \neq 1 \text { and } \alpha(y) \neq 1 \\ 0 & \text { otherwise }\end{cases}
$$

In particular if A is a flat connection on Z with nontrivial holonomy $\alpha=$ hol ${ }_{A}$ then the kernel of D_{A} with P^{+}boundary conditions is isomorphic to \mathbb{C}^{2} if $\alpha\left(x^{p}\right)=1, \alpha(x) \neq 1$, and $\alpha(y) \neq 1$, and this kernel is zero otherwise.
Proof. The first statement is an easy exercise in cohomology since the coefficients are untwisted. The chain complex for the universal cover of Z is computed by the Fox Calculus to be (with $\pi=\pi_{1}(Z)$)

$$
\begin{equation*}
0 \rightarrow \mathbb{Z}[\pi] \stackrel{d_{2}}{\Leftrightarrow} \mathbb{Z}[\pi] \oplus \mathbb{Z}[\pi] \stackrel{d_{1}}{\Rightarrow} \mathbb{Z}[\pi] \rightarrow 0 \tag{6.2}
\end{equation*}
$$

with

$$
d_{1}=\left[\begin{array}{l}
x \Leftrightarrow 1 \\
y \Leftrightarrow 1
\end{array}\right]
$$

and

$$
d_{2}=\left[1+x+\cdots+x^{p-1} \quad x^{p} y^{-q}\left(1+y+y^{2}+\cdots+y^{q-1}\right)\right] .
$$

The cohomology $H^{*}\left(Z ; \mathbb{C}_{\alpha}^{2}\right)$ is defined to be the homology of the chain complex obtained by applying $\operatorname{Hom}_{\mathbb{Z}[\pi]}\left(\Leftrightarrow, \mathbb{C}^{2}\right)$ to the complex $\left(\frac{1}{6} \cdot \overline{2}\right)$) $\overline{2}$ where π acts on \mathbb{C}^{2} via α. The differentials are obtained by replacing x and y in the matrices d_{2} and d_{1} by $\alpha(x)$ and $\alpha(y)$ and taking the transpose. Denote by $d_{1}(\alpha)$ and $d_{0}(\alpha)$ the resulting differentials.

Clearly $d_{0}(\alpha)=0$ if and only if α is trivial. Thus if α is nontrivial Γ then $H^{0}\left(Z ; \mathbb{C}_{\alpha}^{2}\right)=0$. On the other hand Гif α is nontrivial and $\alpha(x)=1$ then $\alpha(y)$ must be a nontrivial q-th root of unity and it follows that $d_{1}(\alpha)=\left[\begin{array}{l}p \\ q\end{array}\right]$ and $d_{0}(\alpha)=\left[\begin{array}{ll}0 & \alpha(y) \Leftrightarrow 1\end{array}\right]$. Since $\alpha(y) \neq 1$, we see that $\operatorname{ker} d_{1}(\alpha)=\operatorname{im} d_{0}(\alpha)$. This implies $H^{1}\left(Z ; \mathbb{C}_{\alpha}^{2}\right)=0$.

Similar arguments apply and give the same conclusion if α is nontrivial and $\alpha(y)=1$.
So assume $\alpha(x) \neq 1$ and $\alpha(y) \neq 1$. This implies that $\operatorname{im~}_{1}(\alpha)$ has complex dimension 2. If $\alpha\left(x^{p}\right)=1$ Гthen $\alpha(x)$ is a nontrivial p-th root of unity Гwhich implies $1+\alpha(x)+\cdots+\alpha\left(x^{p-1}\right)=$ 0 . Since $x^{p}=y^{q}$, it follows also that $\alpha(y)$ is a nontrivial q-th root of unity. Thus $d_{2}(\alpha)$ is the zero map and so $H^{1}\left(Z ; \mathbb{C}_{\alpha}^{2}\right)=\operatorname{ker} d_{1}(\alpha) / \operatorname{im} d_{0}(\alpha)$ is isomorphic to \mathbb{C}^{2} in this case.

On the other hand Γ if $\alpha\left(x^{p}\right) \neq 1$, then $\alpha(x)$ is not a p-th root of unity. Hence $d_{1}(\alpha)$ is not the zero map and this forces $H^{1}\left(Z ; \mathbb{C}_{\alpha}^{2}\right)=0$.

We have seen (equation (3.1)) that if α restricts nontrivially to $T=\partial Z \Gamma$ then the cohomology of T vanishes. Of course Γ since the meridian normally generates $\pi_{1} Z$, any nontrivial representation α of $\pi_{1} Z$ pulls back to a nontrivial representation of $\pi_{1} T$. Now the long exact sequence in cohomology shows that $H^{i}\left(Z ; \mathbb{C}_{\alpha}^{2}\right)=H^{i}\left(Z, \partial Z ; \mathbb{C}_{\alpha}^{2}\right)$. The last statement follows from Proposition

The characterization of the representation varieties $\mathfrak{R}_{S U(2)}(Z)$ of torus knot groups in [2 $\left.{ }_{2}^{2} \overline{5}\right]$ shows that hol $\mathcal{A}_{t}(x)$ is constant (up to conjugacy) along paths of irreducible representations. Let A be a flat connection on Z with nontrivial holonomy and set $\alpha=$ hol ${ }_{A}$. Use Proposition 2-10' to identify $H^{1}\left(Z ; \mathbb{C}_{\alpha}^{2}\right)$ with the kernel of D_{A} on Z with P^{-}boundary conditions. Then Theorem ' 6.11 implies the following result.

Theorem 6.2. If A_{t} is a path of irreducible flat $S U(2)$ connections on the complement Z of a (p, q) torus knot, then the dimension of $H^{1}\left(Z ; \mathbb{C}_{A_{t}}^{2}\right)$ is independent of t. In particular $S F\left(A_{t} ; Z ; P^{-}\right)=0$. Moreover, if $p=2$ then $\operatorname{dim} H^{1}\left(Z ; \mathbb{C}_{A_{t}}^{2}\right)=0$ for all t.
6.2. Jumping points and $\mathbf{S U (2)}$ bifurcation points. As we have already seen Γ the representation variety $\mathfrak{R}_{S U(2)}(Z)$ of the complement of a torus knot can be described as the space obtained by identifying endpoints of $(p \Leftrightarrow 1)(q \Leftrightarrow 1) / 2$ closed arcs with interior points in the line segment $\left[0, \frac{1}{2}\right]$ parameterizing the reducibles. The non-smooth points Γ which are precisely where the arcs are attached Гare called $S U(2)$ bifurcation points. It is a simple matter to characterize the $S U(2)$ bifurcation points (for torus knots) in terms of the Alexander polynomial Γ though the precise combinatorics of how the $S U(2)$ bifurcation points are paired up by this identification depends on p and q and can be tricky. However Γ if $p=2$, the answer is simple because the arcs are glued in a nested way (see Proposition $\overline{6} \cdot \mathbf{5}$).

Closely related to the $S U(2)$ bifurcation points are the \mathbb{C}^{2} jumping points. These play a central role in determining $S F\left(A_{\eta} ; Z ; P^{-}\right)$, the spectral flow along the knot complement.

Definition 6.3. Suppose Z is the complement of a knot K in a homology sphere X.
(i) The \mathbb{C}^{2} jumping points are the gauge orbits of nontrivial reducible flat connections A on Z where the kernel of D_{A} with P^{-}boundary conditions jumps up in dimension. This is the set of reducible flat connections A so that $H^{1}\left(Z ; \mathbb{C}_{A}^{2}\right) \neq 0$.
(ii) The $S U(2)$ bifurcation points are gage orbits of reducible flat connections A on Z which are limits of irreducibleГflat connections.

Theorem ' $\overline{6} . \overline{2}$ ' implies that for torus knot complements Гonly certain reducible flat connections are \mathbb{C}^{2} jumping points. They are characterized in terms of the roots of the Alexander polynomial by the following theorem Γ which is reminiscent of the characterization of the $S U(2)$ bifurcation points in terms of square roots of the Alexander polynomial [255].

Theorem 6.4. Suppose K is the (p, q) torus knot and Z is its exterior. Given a reducible, flat, nontrivial $S U(2)$ connection A, the kernel of D_{A} with P^{-}boundary conditions is nontrivial if and only if $\operatorname{hol}_{A}(\tilde{\mu})$ is a root of the Alexander polynomial

$$
\Delta_{K}(t)=\frac{\left(t^{p q} \Leftrightarrow 1\right)(t \Leftrightarrow 1)}{\left(t^{p} \Leftrightarrow 1\right)\left(t^{q} \Leftrightarrow 1\right)}
$$

Proof. Let $\alpha=\operatorname{hol}_{A}$ be the reducible representation of $\pi_{1} Z$ associated with A. By Theorem : $\overline{6} . \overline{1} 1 \Gamma H^{1}\left(Z, \partial Z ; \mathbb{C}_{\alpha}^{2}\right) \neq 0$ if and only if $\alpha(x)$ has order p^{\prime} and $\alpha(y)$ has order q^{\prime} for $p^{\prime} \neq 1 \neq q^{\prime} \Gamma$ where p^{\prime} divides p and q^{\prime} divides q. Since p^{\prime} and q^{\prime} are relatively prime Γ this implies that $\alpha(x)$ and $\alpha(y)$ generate a cyclic group of order $p^{\prime} q^{\prime}$ equal to $\langle\alpha(\tilde{\mu})\rangle$. Thus $\operatorname{hol}_{A}(\tilde{\mu}) \neq 1$ is a $p q$-th root of unity Pbut it is neither a p-th root nor a q-th root of unity.

For torus knots Γ the roots of $\Delta_{K}(t)$ all lie on the unit circle. Thus \mathbb{C}^{2} jumping points correspond to the reducible representations β_{t} where $e^{2 \pi i s}$ is a root of Δ_{K}. Since we always use $\left[0, \frac{1}{2}\right]$ to parameterize reducible $S U(2)$ representations Γ we will simply say $s \in\left[0, \frac{1}{2}\right]$ is a \mathbb{C}^{2} jumping point if β_{s} is. Similarly .we say that s is an $S U(2)$ bifurcation point if β_{s} is.

We give two quick examples. First Γ if K is the trefoil then $\Delta_{K}(t)=t^{2} \Leftrightarrow t+1$. Its roots are $e^{ \pm \pi i / 3}$. This gives one \mathbb{C}^{2} jumping point at $s=1 / 6$ (this is the black dot in Figure ${ }_{4}^{(1)}$). By $[2 \overline{2} \overline{5}] \Gamma$ the $S U(2)$ bifurcation points are the solutions to $\Delta_{K}\left(t^{2}\right)=0$. So for the trefoil Γ $1 / 12$ and $5 / 12$ are the $S U(2)$ bifurcation points. (These are just the square roots of the \mathbb{C}^{2} jumping point.) Next Γ if K is the (2,5) torus knot Γ then $\Delta_{K}(t)=t^{4} \Leftrightarrow t^{3}+t^{2} \Leftrightarrow t+1$. Its roots are $e^{ \pm \pi i / 5}$ and $e^{ \pm 3 \pi i / 5} \Gamma$ yielding two \mathbb{C}^{2} jumping points at $1 / 10$ and $3 / 10$. There are four $S U(2)$ bifurcation points: $\left\{\frac{1}{20}, \frac{3}{20}, \frac{7}{20}, \frac{9}{20}\right\}$. Generalizing to $(2, q)$ torus knots Γ we obtain the following proposition.

Proposition 6.5. Suppose Z is the exterior of $a(2, q)$ torus knot and consider its $S U(2)$ representation variety $\mathfrak{R}_{S U(2)}(Z)$. Parameterize the reducible representations by $\left[0, \frac{1}{2}\right]$ as above. Then there are $(q \Leftrightarrow 1) / 2$ arcs of irreducible representations, indexed as \widehat{R}_{ℓ} for $\ell=1, \ldots,(q \Leftrightarrow 1) / 2$, such that \widehat{R}_{ℓ} is attached to $\left[0, \frac{1}{2}\right]$ at the $S U(2)$ bifurcation points $\frac{2 \ell-1}{4 q}$ and $\frac{1}{2} \Leftrightarrow \frac{2 \ell-1}{4 q}$. Thus the arcs of irreducible representations are nested.

Notice further that the set of $S U(2)$ bifurcation points $\left\{\frac{2 \ell-1}{4 q}, \left.\frac{1}{2} \Leftrightarrow \frac{2 \ell-1}{4 q} \right\rvert\, \ell=1, \ldots,(q \Leftrightarrow 1) / 2\right\}$ is disjoint from the set $\left\{\left.\frac{2 \ell-1}{2 q} \right\rvert\, \ell=1, \ldots,(q \Leftrightarrow 1) / 2\right\}$ of \mathbb{C}^{2} jumping points.

Proof. The Alexander polynomial of $K(2, q)$ is $\Delta_{K}(t)=\frac{t^{q}+1}{t+1}$ and its roots are the q-th roots of $\Leftrightarrow 1$ different from $\Leftrightarrow 1$. Theorem ' 1.1 ' easily identifies the \mathbb{C}^{2} jumping points as the set $\left\{\left.\frac{2 \ell-1}{2 q} \right\rvert\, \ell=1, \ldots,(q \Leftrightarrow 1) / 2\right\}$. The $S U(2)$ bifurcation points correspond to the reducible representations β with $\beta\left(\tilde{\mu}^{2}\right)$ a root of $\Delta_{K}(t)[2 \overline{2} 5]$. Taking square roots gives the set $\left\{\frac{2 \ell-1}{4 q}, \frac{1}{2} \Leftrightarrow\right.$ $\left.\left.\frac{2 \ell-1}{4 q} \right\rvert\, \ell=1, \ldots,(q \Leftrightarrow 1) / 2\right\}$ of $S U(2)$ bifurcation points.

The arcs \widehat{R}_{ℓ} can be described as follows. Since $\pi_{1} Z=\left\langle x, y \mid x^{2}=y^{q}\right\rangle$ has infinite cyclic center generated by x^{2}, if α is irreducible then $\alpha\left(x^{2}\right)=\Leftrightarrow 1$ (the centralizer of any nonabelian subgroup of $S U(2)$ is ± 1). Conjugating if necessary Γ we have $\alpha(x)=i$. Similarly $\Gamma \alpha(y)$ can be conjugated to lie in the $i j$-plane and must be a q-th root of $\Leftrightarrow 1$. Drawing the great circles from 1 to $\alpha(x)$ and from 1 to $\alpha(y)$ Гone can use the angle between the great circles to parameterize the $\operatorname{arcs} \widehat{R}_{\ell}$ as in the proof of Theorem 1 in

We will be even more specific. For $\ell=1, \ldots,(q \Leftrightarrow 1) / 2$ define a 1 -parameter family of representations $\alpha_{\ell, t}: \pi_{1} Z \rightarrow S U(2)$ for $t \in[0,1]$ by setting $\alpha_{\ell, t}(x)=i$ and

$$
\alpha_{\ell, t}(y)=\cos \left(\frac{(2 \ell-1) \pi}{q}\right)+\sin \left(\frac{(2 \ell-1) \pi}{q}\right)(i \cos (\pi t)+j \sin (\pi t)) .
$$

These representations are irreducible except at the endpoints. The meridian of $K(2, q)$ is represented in $\pi_{1} Z$ by $\tilde{\mu}=x y^{(1-q) / 2} \Gamma$ and a simple computation shows that the endpoints of α_{ℓ} are the reducible representations β_{s} for $s \in\left\{\frac{q-2 \ell-2}{4 q}, \frac{1}{2} \Leftrightarrow \frac{q-2 \ell-2}{4 q}\right\}$. As ℓ ranges from 1 to $(q \Leftrightarrow 1) / 2 \Gamma$ the associated pairs of points in $\left[0, \frac{1}{2}\right]$ are nested ($\alpha_{\ell, t}$ parameterizes the arc $\left.\widehat{R}_{(q-1) / 2-\ell}.\right)$

The following figures show the $S U(2)$ representation varieties for several torus knots. The horizontal line segment denotes the reducibles Γ and the \mathbb{C}^{2} jumping points are dots. The curved arcs are the irreducible components \widehat{R}_{ℓ}.

K (2,5)

K(2,7)

K $(2,9)$

Figure 7. $S U(2)$ representation varieties of $(2, q)$ torus knot groups
Comparing Figures $\stackrel{1}{2}$ for arbitrary (p, q) torus knots. The sets of $S U(2)$ bifurcation points and \mathbb{C}^{2} jumping points are not in general disjoint. Nor are the irreducible components nested as for $K(2, q)$. For $K(p, q)$ Гone can still use Theorem ${ }^{\prime} \overline{6} .4$ to characterize the \mathbb{C}^{2} jumping points Γ they occur at the reducible representations β_{s} where $\beta_{s}(\tilde{\mu})=e^{2 \pi i s}$ is a $p q$-th root of unity which is neither a p-th root nor a q-th root of unity.
Corollary 6.6. Suppose X is a homology sphere obtained by surgery on a $(2, q)$ torus knot and A is a nontrivial flat $S U(2)$ connection on X. Then $H^{i}\left(X ; \mathbb{C}_{A}^{2}\right)=0=H^{i}\left(X ; s u(2)_{A}\right)$ for all i. Hence, $\mathfrak{M}_{S U(2)}^{*}(X)$ is regular as a subset of $\mathfrak{M}_{S U(3)}(X)$ and the correction term $\lambda_{S U(3)}^{\prime \prime}(X)$ can be computed in terms of $S U(2)$ rho invariants.

Figure 8. $S U(2)$ representation varieties of (p, q) torus knot groups

Proof. Since X is a homology sphere Γ any nontrivial flat $S U(2)$ connection is irreducible. The restriction of such a connection to Z is irreducible (since $\left.\pi_{1}(Y) \cong \mathbb{Z}\right)$ Гand its restriction to T is nontrivial since the meridian $\tilde{\mu}$ normally generates $\pi_{1} Z$. Theorem ${ }^{2} .2$ implies that $H^{1}\left(Z ; \mathbb{C}_{A}^{2}\right)=0$ and the corollary follows from the computations of Subsection '. 2.1 using the Mayer-Vietoris sequence. (The last sentence is just the definition of regularity from [5.0.)

The corollary reflects a rather special property of $(2, q)$ torus knots. If $p, q>2$ and X is a homology sphere obtained by surgery on $K(p, q)$ then there exists an irreducible $S U(2)$ representation which is the limit of an arc of irreducible $S U(3)$ representations Γ and hence $\mathfrak{M}_{S U(2)}^{*}(X)$ is not regular (when viewed as a subset of $\mathfrak{M}_{S U(3)}(X)$) Гalthough it is a compact 0 -dimensional manifold.

Results of Fintushel and Stern shows that Γ for homology spheres X obtained by surgery on a torus knot $\Gamma \mathfrak{R}_{S U(2)}^{*}(X)$ is a finite set of points and the parity of $S F_{s u(2)}(\Theta, A ; X)$ is independent of $[A] \in \mathfrak{M}_{S U(2)}^{*}(X)$. Corollary 6 surgeries on a $(2, q)$ torus knot Γ

$$
\lambda_{S U(3)}^{\prime \prime}(X)= \pm \frac{1}{2} \sum_{[A] \in \mathfrak{M}_{S U(2)}^{*}(X)} \varrho_{X}(A) .
$$

The next result determines the sign. Recall if $\Delta_{K}(t)$ denotes the symmetrized Alexander polynomial of the knot $K \Gamma$ then $\Delta_{K}^{\prime \prime}(1)$ equals twice Casson's invariant of the knot ($\left[\begin{array}{l}1,1]\end{array}\right]$). For the torus knot $K=K(2, q) \Gamma \Delta_{K}^{\prime \prime}(1)=\left(q^{2} \Leftrightarrow 1\right) / 4$.

Theorem 6.7. Let K be the $(2, q)$ torus knot. Assume $k>0$ and denote by $X_{ \pm k}$ the result of $\pm \frac{1}{k}$ surgery on K. By Corollary ${ }^{\prime} \overline{6}-\underline{a}$, the $\mathfrak{M}_{S U(2)}\left(X_{ \pm k}\right)$ is regular as a subspace of $\mathfrak{M}_{S U(3)}\left(X_{ \pm k}\right)$. If $b=\left(q^{2} \Leftrightarrow 1\right) / 4$ then the moduli spaces $\mathfrak{M}_{S U(2)}^{*}\left(X_{k}\right)$ and $\mathfrak{M}_{S U(2)}^{*}\left(X_{-k}\right)$ consist of $k b$ points.
(i) Writing $\mathfrak{M}_{S U(2)}\left(X_{k}\right)=\left\{[\Theta],\left[A_{1}\right], \ldots,\left[A_{k b}\right]\right\}$, then $S F_{s u(2)}\left(\Theta, A_{i} ; X_{k}\right)$ is odd and

$$
\begin{equation*}
\lambda_{S U(3)}^{\prime \prime}\left(X_{k}\right)=\Leftrightarrow \frac{1}{2} \sum_{i=1}^{k b} \varrho_{X_{k}}\left(A_{i}\right) . \tag{6.3}
\end{equation*}
$$

(ii) Writing $\mathfrak{M}_{S U(2)}\left(X_{-k}\right)=\left\{[\Theta],\left[A_{1}\right], \ldots,\left[A_{k b}\right]\right\}$, then $S F_{s u(2)}\left(\Theta, A_{i} ; X_{-k}\right)$ is even and

$$
\begin{equation*}
\lambda_{S U(3)}^{\prime \prime}\left(X_{-k}\right)=\frac{1}{2} \sum_{i=1}^{k b} \varrho_{X_{-k}}\left(A_{i}\right) . \tag{6.4}
\end{equation*}
$$

Proof. Suppose X is a homology sphere obtained by a positive surgery on $K(p, q)$. We claim that if A is an irreducible flat $S U(2)$ connection on $X \Gamma$ then $S F_{s u(2)}(\Theta, A ; X)$ is odd. Theorem , 5.10 O then implies the first assertion.

By Taubes' theorem [$[\overline{0} \overline{0}]$ and the surgery formula for Casson's invariant Γ this implies that $S F_{s u(2)}(\Theta, A ; X)$ is even in case X is obtained by a negative surgery on $K(p, q) \Gamma$ so the second assertion follows from the first.

Since Casson's knot invariant is positive for all $(2, q)$ torus knots Γ it suffices to check one exampleГwhich we take to be the Poincaré homology sphere.

First Γ consider a path A_{t} of $S U(2)$ connections on a homology sphere X with A_{i} flat for $i=0,1$. Let $\alpha_{i}=\operatorname{hol}_{A_{i}}$ for $i=0,1$ be the associated $S U(2)$ representations. Applying the Atiyah-Patodi-Singer index theorem as in the proof of Theorem $\bar{\omega}$ see that

$$
\begin{align*}
S F_{s u(2)}\left(A_{t} ; X\right)= & 8\left(c s\left(A_{1}\right) \Leftrightarrow c s\left(A_{0}\right)\right)+\frac{1}{2}\left(\varrho_{X}\left(\operatorname{ad} \alpha_{1}\right) \Leftrightarrow \varrho_{X}\left(\operatorname{ad} \alpha_{0}\right)\right) \\
& +\frac{1}{2}\left(\operatorname{dim} H^{0+1}\left(X ; s u(2)_{\alpha_{1}}\right) \Leftrightarrow \operatorname{dim} H^{0+1}\left(X ; s u(2)_{\alpha_{0}}\right)\right), \tag{6.5}
\end{align*}
$$

where the rho invariants are defined relative to the odd signature operator acting on $s u(2)$ forms via the adjoint action. (Comparing this to the formula at the end of Section 7 in $[2 \overline{2} 4,-\overline{1}$ the sign discrepancies are explained by the fact that in this paper Γ we are using the $(\Leftrightarrow \epsilon, \Leftrightarrow \epsilon)$ convention for spectral flow.)

Now consider the Poincaré homology sphere X Гdefined here to be +1 surgery on the right hand trefoil. Consider a path from Θ to the flat connection A_{1} constructed in Section ${ }^{\prime 5} .4 \mathbf{L}^{1}$ Since $\pi_{1} X$ is finite Oone can compute that $\varrho_{X}\left(\operatorname{ad} \alpha_{1}\right)= \pm \frac{73}{15}$ by standard methods The sign ambiguity comes about because the answer depends on how X is oriented. This problem can be resolved since we know that $c s\left(A_{1}\right)=\frac{1}{120}$ by the computations in Subsection ,5.4. Applying equation $\left(\overline{6}_{6} \cdot \overline{5}_{5}^{\prime}\right)$ to the path $A_{t} \Gamma$ we see that the only way the left hand side can be an integer is if $\varrho_{X}\left(\operatorname{ad} \alpha_{1}\right)=\frac{73}{15} \Gamma$ in which case $S F_{s u(2)}\left(\Theta, A_{1} ; X\right)=1 \Gamma$ which is odd Γ as claimed.

Remark. It is well-known that Γ at least as unoriented manifolds $\Gamma \frac{1}{k}$-surgery on a torus knot yields a Brieskorn homology sphere. These spaces admit a natural orientation as the link of an algebraic singularity. Using standard handlebody methods (or alternatively「using the fact that the $s u(2)$-spectral flow from the trivial connection ot a flat $S U(2)$ connection on a Brieskorn sphere is even $[1-1 / 1)$ it follows that Γ as oriented manifolds Γ

$$
X_{k} \cong \Leftrightarrow \Sigma(2, q, 2 q k \Leftrightarrow 1) \quad \text { and } \quad X_{-k} \cong \Sigma(2, q, 2 q k+1)
$$

Theorems $\overline{6} \cdot \overline{-1}$ and $\overline{6} \bar{i} \bar{i}$ give a method for computing $\lambda_{S U(3)}^{\prime \prime}$ for surgeries on $(2, q)$ torus knots. Combining this with the computations of $\lambda_{S U(3)}^{\prime}$ given in [1 ill Γ we shall determine $\lambda_{S U(3)}$ for homology spheres obtained by surgery on $K(2, q)$. The analogous computation for $K(p, q)$ is complicated by the fact that one must first apply a perturbation to make the moduli space regular so we postpone the calculations for surgeries on other torus knots to a future article.

Consider the complement Z of $K(p, q) \Gamma$ with $\partial Z=T \Gamma$ the torus. Recall that $\mathfrak{R}_{S U U(2)(T)}$ denotes the variety of conjugacy classes of $S U(2)$ representations of $\pi_{1} T$. Any choice of generators $x, y \in \pi_{1} T=\mathbb{Z} \oplus \mathbb{Z}$ determine a branched cover $\mathbb{R}^{2} \rightarrow \mathfrak{R}_{S U(2)}(T)$ by assigning to the pair $(m, n) \in \mathbb{R}^{2}$ the conjugacy class of the homomorphism taking x to $e^{2 \pi i m}$ and y to $e^{2 \pi i n}$. (See Equation ($(\bar{B} . \overline{2})$).) We will need to consider the cases $x=\tilde{\mu} \tilde{\lambda}^{k}$ and $y=\tilde{\lambda}$ for various k simultaneously. Thus we introduce the notation

$$
f_{k}: \mathbb{R}^{2} \rightarrow \mathfrak{R}_{S U(2)}(T)
$$

for the map taking (m, n) to the conjugacy class of the homomorphism $\alpha: \pi_{1} T \rightarrow S U(2)$ satisfying $\alpha\left(\tilde{\mu} \tilde{\lambda}^{k}\right)=e^{2 \pi i m}$ and $\alpha(\tilde{\lambda})=e^{2 \pi i n}$. Letting $g_{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear map

$$
\begin{equation*}
g_{k}(m, n)=(m+k n, n) \tag{6.6}
\end{equation*}
$$

we see that

$$
f_{0}=f_{k} \circ g_{k}
$$

Now consider the restriction map $\mathfrak{R}_{S U(2)}^{*}(Z) \rightarrow \mathfrak{R}_{S U(2)}(T)$. Each component of $\mathfrak{R}_{S U(2)}^{*}(Z)$ is an open arc. Proposition $\mathbf{i} \cdot \mathbf{5}$. 5 enumerates these in the special case of $K(2, q)$; the path components are denoted \widehat{R}_{ℓ}. The image in $\mathfrak{R}_{S U(2)}(T)$ of each arc misses the branch points since the branch points correspond to central representations of $\pi_{1} T \Gamma$ but $\tilde{\mu}$ cannot be sent to the center ± 1 by an irreducible (i.e. non-abelian) reprensentation since it is a normal generator of $\pi_{1} Z$. Thus each path component of $\mathfrak{R}_{S U(2)}^{*}(Z)$ lifts to \mathbb{R}^{2}.

We claim that any such lift using the cover $f_{0}: \mathbb{R}^{2} \rightarrow \mathfrak{R}_{S U(2)}(T)$ takes the components of $\mathfrak{R}_{S U(2)}^{*}(Z)$ to arcs of slope $\Leftrightarrow p q$. One can see this as follows. If $\alpha_{t}: \pi_{1} Z \rightarrow S U(2)$ is any continuous path of irreducible representations Γ then it can be conjugated so that $\alpha_{t}(\tilde{\mu})$ and $\alpha_{t}(\tilde{\lambda})$ lie in the standard $U(1)$ subgroup of $S U(2)$. If α_{t} is irreducible Γ then $\alpha_{t}\left(x^{p}\right)= \pm 1$. Writing $\alpha_{t}(\tilde{\mu})=e^{2 \pi i m_{t}}$ and $\alpha_{t}(\tilde{\lambda})=e^{2 \pi i n_{t}} \Gamma$ then equation ($(\overline{6} \cdot \underline{1}) \Gamma$ namely that $\tilde{\lambda}=x^{p}(\tilde{\mu})^{-p q} \Gamma$ shows that $p q m_{t}+n_{t}$ is constant.

To understand how the arcs in $\mathfrak{R}_{S U(2)}^{*}(Z)$ lift using the cover $f_{k}: \mathbb{R}^{2} \rightarrow \mathfrak{R}_{S U(2)}(T) \Gamma$ that is Γ with respect to μ and λ for the homology sphere obtained by $\frac{1}{k}$ surgery on $K(p, q)$ Гone just applies the map g_{k} of equation ($\left.\overline{6} \cdot \mathbf{6}\right)$. Thus each arc lifts using f_{k} to arcs in \mathbb{R}^{2} of slope $\frac{p q}{k p q-1}$.

The following proposition completes the identification of the lifts of each arc \widehat{R}_{ℓ} for the $(2, q)$ torus knots.

Proposition 6.8. Let K be the $(2, q)$ torus knot and Z its complement. For $\ell=1, \ldots,(q \Leftrightarrow$ 1) $/ 2$, consider the curve

$$
R_{\ell}(t)=(1 \Leftrightarrow t)\left(\frac{2 \ell-1}{4 q}, 0\right)+t\left(\frac{1}{2} \Leftrightarrow \frac{2 \ell-1}{4 q}+k(2 \ell \Leftrightarrow q \Leftrightarrow 1), 2 \ell \Leftrightarrow q \Leftrightarrow 1\right), \quad 0<t<1 .
$$

Then R_{ℓ} is the lift under $f_{k}: \mathbb{R}^{2} \rightarrow \mathfrak{R}_{S U(2)}(T)$ of $\widehat{R}_{\ell} \subset \mathfrak{R}_{S U(2)}^{*}(Z)$ (see Proposition $\overline{6}=\bar{S}_{1}$). All other lifts of \widehat{R}_{ℓ} are obtained by reflecting this lift through the origin and/or translating by an integer vector.
Proof. We first determine the lift with respect to the map $f_{0}: \mathbb{R}^{2} \rightarrow \mathfrak{R}_{S U(2)}(T)$. It was shown in the paragraph preceding this proposition that any lift of \widehat{R}_{ℓ} has slope $\Leftrightarrow 2 q$. Proposition $\overline{6} \cdot 5$ shows that the endpoints of the $\operatorname{arc} \widehat{R}_{\ell}$ are reducible representations sending $\tilde{\mu}$ to $e^{2 \pi i(2 \ell-1) / \sqrt{4} q^{*}}$
and $e^{2 \pi i(1 / 2-(2 \ell-1) / 4 q)}$ and $\tilde{\lambda}$ to 1 . Thus there is a lift of \widehat{R}_{ℓ} starting at $\left(\frac{2 \ell-1}{4}, 0\right)$ and ending at $\left(e\left(\frac{1}{2} \Leftrightarrow \frac{2 \ell-1}{4}\right)+a, b\right)$ for some integers (a, b) and $e= \pm 1$.

We claim that $a=0$ and $e=1$. Assuming this for a moment Γ the fact that the slope is $\Leftrightarrow 2 q$ implies that $b=2 \ell \Leftrightarrow q \Leftrightarrow 1$. Thus the curve

$$
(1 \Leftrightarrow t)\left(\frac{2 \ell-1}{4 q}, 0\right)+t\left(\frac{1}{2} \Leftrightarrow \frac{2 \ell-1}{4 q}, 2 \ell \Leftrightarrow q \Leftrightarrow 1\right), \quad 0 \leq t \leq 1
$$

parameterizes the lift using f_{0} of \widehat{R}_{ℓ} based at $\left(\frac{2 \ell-1}{4 q}, 0\right)$. Applying the map g_{k} of equation ($\bar{\sigma}_{6} \cdot \bar{\sigma}_{1}$) finishes the proof.

It remains to show that $a=0$ and $e=1$. Suppose not. Then the lift of \widehat{R}_{ℓ} to \mathbb{R}^{2} intersects one of the vertical lines $x=0$ or $x=\frac{1}{2}$. This means there exists a representation $\alpha \in \widehat{R}_{\ell} \subset \mathfrak{R}_{S U(2)}^{*}(Z)$ so that $\alpha(\tilde{\mu})= \pm 1$. But $\tilde{\mu}$ normally generates $\pi_{1} Z$ and $\pm 1 \in S U(2)$ is the center Γ so α is central Γ contradicting the fact that α is irreducible.
6.3. Dehn surgeries on the trefoil. In this subsection Γ we compute the gauge theoretic invariants for flat connections on the manifolds $X_{ \pm k}$ obtained by $\pm \frac{1}{k}$ surgery on the right hand trefoil K.

We consider the cases of positive and negative surgeries separately to make counting arguments simpler in Theorems, 9.9 of the curves R_{ℓ} are positive for $\bar{k}>0$ and negative for $k<0$ changing the combinatorics of the numbers a, b and c. We combine the separate results in the computations of the $S U(3)$
 $k=0$).

Theorem 6.9. Suppose $k>0$ and denote by X_{k} the result of $\frac{1}{k}$ surgery on the right hand trefoil K. Then $\pi_{1}\left(X_{k}\right)$ admits $2 k$ distinct conjugacy classes of irreducible SU(2) representations. In terms of the moduli space of flat connections, this gives

$$
\mathfrak{M}_{S U(2)}\left(X_{k}\right)=\left\{[\Theta],\left[A_{1}\right], \ldots,\left[A_{2 k}\right]\right\} .
$$

For $i=1, \ldots, 2 k$, we can choose A_{i} a representative for the gauge orbit $\left[A_{i}\right]$ with

$$
\begin{aligned}
S F\left(\Theta, A_{i} ; X_{k}\right) & =2 \Leftrightarrow 2 i \Leftrightarrow 2\left[\frac{i}{k+1}\right] \\
c s\left(A_{i}\right) & =2 \Leftrightarrow 2 i+(2 k \Leftrightarrow 2 i+2)\left[\frac{i}{k+2}\right]+\frac{(12 i \Leftrightarrow 11)^{2}}{24(6 k \Leftrightarrow 1)} \\
\varrho_{X_{k}}\left(A_{i}\right) & =4 i \Leftrightarrow 2+4\left[\frac{i}{k+1}\right]+8(i \Leftrightarrow k \Leftrightarrow 1)\left[\frac{i}{k+2}\right] \Leftrightarrow \frac{(12 i \Leftrightarrow 11)^{2}}{6(6 k \Leftrightarrow 1)}
\end{aligned}
$$

Here, $[x]$ means the greatest integer less than or equal to x.
Proof. By Proposition 6.1 the lift of the one arc of irreducible representations from $\mathfrak{R}_{S U(2)}(T)$ to \mathbb{R}^{2} is given by the curve

$$
R_{t}=(1 \Leftrightarrow t)\left(\frac{1}{12}, 0\right)+t\left(\frac{5}{12} \Leftrightarrow 2 k, \Leftrightarrow 2\right), \quad 0 \leq t \leq 1
$$

The flat connections which extend over $\frac{1}{k}$ surgery correspond to points along the path where the first coordinate $(1 \Leftrightarrow t) \frac{1}{12}+t\left(\frac{5}{12} \Leftrightarrow 2 k\right)$ is an integer. Let A_{i} be the i-th such point
along the arc R_{t}. Let t_{i} be the corresponding t value. Since $k>0$ we see that t_{i} solves the equation $(1 \Leftrightarrow t) \frac{1}{12}+t\left(\frac{5}{12} \Leftrightarrow 2 k\right)=1 \Leftrightarrow i$ for $i=1, \ldots, 2 k$ and so

$$
t_{i}=\frac{12 i \Leftrightarrow 11}{24 k \Leftrightarrow 4}, \quad i=1, \ldots, 2 k
$$

Fix $i \in\{1, \ldots, 2 k\}$. Then there is a path of flat connections C_{t} in normal form on Z so that the restriction to the torus T is $a_{m, n}=\Leftrightarrow m_{t} i d x \Leftrightarrow n_{t} i d y$ with $\left(m_{t}, n_{t}\right)$ the composite of the horizontal line segment from $(0,0)$ to $\left(\frac{1}{12}, 0\right)$ with R_{t} Гending at $R_{t}\left(t_{i}\right)$.
¿From this path we compute the integers a_{i}, b_{i} and c_{i} and construct the flat connection A_{i} on X_{k} and the path A_{t} of connections on X_{k} starting at the trivial connection and ending at A_{i} according to the method of Subsection $\overline{5} 1$. (We hope the clash of notation $\left.A_{t}\right|_{t=t_{i}}=A_{i}$ does not cause too much confusion. The integer i is fixed throughout the rest of the argument.)

By definition $\Gamma a_{i}=1 \Leftrightarrow i$ and

$$
b_{i}=\left[\Leftrightarrow 2 t_{i}\right]=\left[\Leftrightarrow \frac{12 i-11}{12 k-2}\right]=\Leftrightarrow 1 \Leftrightarrow\left[\frac{i}{k+1}\right] .
$$

Inspecting the graph of the path $\left(m_{t}, n_{t}\right)$ one can compute that

$$
c_{i}=2 i \Leftrightarrow 2+(2 i \Leftrightarrow 2 k \Leftrightarrow 2)\left[\frac{i}{k+2}\right] .
$$

To see this Γ observe that the loop constructed in Subsection 1 $(1 \Leftrightarrow j, 0) \Gamma j=1, \cdots, i \Leftrightarrow 1$. If $i \geq k+2 \Gamma$ it also encloses the lattice points $(1 \Leftrightarrow j, \Leftrightarrow 1) \Gamma$ for $j=k+1, \ldots, i \Leftrightarrow 1$. Since the loop winds around all the lattice points clockwise Γ it follows that $c_{i}=2(i \Leftrightarrow 1)+2(i \Leftrightarrow k \Leftrightarrow 1)\left[\frac{i}{k+2}\right]$.

Now Theorem ${ }^{5} .4$ implies that $S F\left(\Theta, A_{i}\right)=2 \Leftrightarrow 2 i+2\left[\frac{i}{k+1}\right]$ because the spectral flow $S F\left(C_{t} ; Z ; P^{-}\right)$along the knot complement vanishes.

To compute $c s\left(A_{i}\right)$ Гnotice that the integral term $\int m^{\prime} n$ in Theorem vanishes along the first part of the path (since $n_{t}=0$ along that part). On the second part one computes

$$
2 \int_{0}^{t_{i}} m^{\prime} n=\left(\frac{1}{12} \Leftrightarrow(1 \Leftrightarrow i)\right)\left(2 t_{i}\right)=\frac{(12 i \Leftrightarrow 11)^{2}}{24(6 k \Leftrightarrow 1)}
$$

and substituting this into the formula of Theorem ${ }^{5} .5$.

$$
\operatorname{cs}\left(A_{i}\right)=2 \Leftrightarrow 2 i+(2 k \Leftrightarrow 2 i+2)\left[\frac{i}{k+2}\right]+\frac{(12 i \Leftrightarrow 11)^{2}}{24(6 k \Leftrightarrow 1)} .
$$

Theorem 15.7

For negative surgeries Γ we get the following analogous result.
Theorem 6.10. Suppose $k>0$ and let X_{-k} denote $\Leftrightarrow \frac{1}{k}$ surgery on the right hand trefoil. Then $\pi_{1}\left(X_{-k}\right)$ admits $2 k$ distinct conjugacy classes of irreducible $S U(2)$ representations. In terms of the moduli space of flat connections,

$$
\mathfrak{M}_{S U(2)}\left(X_{-k}\right)=\left\{[\Theta],\left[A_{1}\right], \ldots,\left[A_{2 k}\right]\right\} .
$$

For $i=1, \ldots, 2 k$, we can choose A_{i} a representative for the gauge orbit $\left[A_{i}\right]$ with

$$
\begin{aligned}
S F\left(\Theta, A_{i} ; X_{-k}\right) & =2 i+2\left[\frac{i}{k+1}\right] \\
c s\left(A_{i}\right) & =2 i+(2 i \Leftrightarrow 2 k)\left[\frac{i}{k+1}\right] \Leftrightarrow \frac{(12 i \Leftrightarrow 1)^{2}}{24(6 k+1)} \\
\varrho_{X_{-k}}\left(A_{i}\right) & =2 \Leftrightarrow 4 i+4(2 k \Leftrightarrow 2 i+1)\left[\frac{i}{k+1}\right]+\frac{(12 i \Leftrightarrow 1)^{2}}{6(6 k+1)} .
\end{aligned}
$$

Proof. This theorem is proved using a similar argument as was used for positive Dehn surgery. The main difference is that now the second part of path $\left(m_{t}, n_{t}\right)$ is given by

$$
(1 \Leftrightarrow t)\left(\frac{1}{12}, 0\right)+t\left(\frac{5}{12}+2 k, \Leftrightarrow 2\right) .
$$

This path has first coordinate the integer $i \in\{1, \ldots, 2 k\}$ when

$$
t_{i}=\frac{12 i \Leftrightarrow 1}{24 k+4} .
$$

¿From the definitions $\Gamma a_{i}=i$ and

$$
b_{i}=\left[\Leftrightarrow 2 t_{i}\right]=\left[\Leftrightarrow \frac{12 i-1}{12 k+2}\right]=\Leftrightarrow 1 \Leftrightarrow\left[\frac{i}{k+1}\right] .
$$

One can compute from the graph of the path $\left(m_{t}, n_{t}\right)$ using a similar analysis as in the proof of Theorem '6.9' that

$$
c_{i}=\Leftrightarrow 2 i+(2 k \Leftrightarrow 2 i)\left[\frac{i}{k+1}\right] .
$$

These determine as in Subsection '1.1' a path of connections on X_{-k} from the trivial connection to a connection A_{i} extending flatly over X_{-k}.

As before Γ the spectral flow along Z vanishes. The integral term is computed as

$$
2 \int_{0}^{t_{1}} m^{\prime} n=\Leftrightarrow\left(i \Leftrightarrow \frac{1}{12}\right)\left(2 t_{i}\right)=\Leftrightarrow \frac{(12 i \Leftrightarrow 1)^{2}}{24(6 k+1)} .
$$

The proof is then completed by applying Theorems 5

The following theorem gives a general computation of the Casson $S U(3)$ invariant $\lambda_{S U(3)}$ for surgeries on the trefoil.

Theorem 6.11. For any integer k let X_{k} denote the homology sphere obtained by $\frac{1}{k}$ surgery on the trefoil. Then

$$
\lambda_{S U(3)}\left(X_{k}\right)=\frac{k\left(84 k^{2} \Leftrightarrow 138 k+19\right)}{6(6 k \Leftrightarrow 1)}
$$

Proof. Consider first $k>0$. The results in Section 5 of [$\operatorname{lin}_{1}^{1}$] show that $\lambda_{S U(3)}^{\prime}\left(X_{k}\right)=3 k^{2} \Leftrightarrow k$.

that

$$
\begin{aligned}
\lambda_{S U(3)}\left(X_{k}\right) & =\lambda_{S U(3)}^{\prime}\left(X_{k}\right)+\lambda_{S U(3)}^{\prime \prime}\left(X_{k}\right) \\
& =3 k^{2} \Leftrightarrow k \Leftrightarrow \frac{1}{2} \sum_{i=1}^{2 k} \varrho_{X_{k}}\left(A_{i}\right) \\
& =3 k^{2} \Leftrightarrow k \Leftrightarrow \frac{1}{2} \sum_{i=1}^{2 k}\left(4 i \Leftrightarrow 2+4\left[\frac{i}{k+1}\right]+8(i \Leftrightarrow k \Leftrightarrow 1)\left[\frac{i}{k+2}\right] \Leftrightarrow \frac{(12 i \Leftrightarrow 11)^{2}}{6(6 k \Leftrightarrow 1)}\right)
\end{aligned}
$$

Using that

$$
\begin{aligned}
\sum_{i=1}^{2 k} 4\left[\frac{i-1}{k}\right]+8(i \Leftrightarrow k \Leftrightarrow 1)\left[\frac{i}{k+2}\right] & =\sum_{i=k+1}^{2 k} 4+\sum_{i=k+2}^{2 k} 8(i \Leftrightarrow k \Leftrightarrow 1) \\
& =4 k+4 k^{2} \Leftrightarrow 4 k=4 k^{2}
\end{aligned}
$$

and standard summation formulas Γ we see that

$$
\lambda_{S U(3)}=\frac{k\left(84 k^{2} \Leftrightarrow 138 k+19\right)}{6(6 k \Leftrightarrow 1)}
$$

 formula.

Inspecting this proof one sees that the terms involving the greatest integer function in the sum defining $\lambda_{S U(3)}^{\prime \prime}\left(X_{k}\right)$ for $k>0$ contribute a quadratic polynomial in k to $\lambda_{S U(3)}\left(X_{k}\right) \Gamma$ and the remaining terms contribute a rational function whose numerator is cubic in k and whose denominator is $6(6 k \Leftrightarrow 1)$. A perfectly analogous computation in the case of $K(2, q)$ treated below shows that the $S U(3)$ Casson invariant of $\frac{1}{k}$ surgery on $K(2, q)$ will always be a rational function with cubic numerator and denominator $2 q(2 q k \Leftrightarrow 1)$ for $k>0$. Similarly the $S U(3)$ Casson invariant of $\Leftrightarrow \frac{1}{k}$ surgery on $K(2, q)$ will always be a rational function with cubic numerator and denominator $2 q(2 q k+1)$.
6.4. Dehn surgeries on $(2, q)$ torus knots. In this subsection Γ we compute the spectral flow and the Chern-Simons invariants for flat connections on homology spheres obtained by surgery on a $(2, q)$ torus knot. We also determine the correction term $\lambda_{S U(3)}^{\prime \prime}$ by summing the rho invariants and applying Theorem $\overline{6} . \overline{7}$

The main difference Which is illustrated in Figure (see also Figure $\overline{9}$ (is that the spectral flow $S F\left(A_{\eta} ; Z ; P^{-}\right)$along the knot complement need not vanish as it did for the complement of the trefoil. For example Γ for $\frac{1}{k}$-surgery on $K(2,5) \Gamma$ the two lifts R_{1} and R_{2} of the image of $\Re_{S U(2)}^{*}(Z) \rightarrow \Re_{S U(2)}(T)$ are separated by a \mathbb{C}^{2} jumping point.

Theorem 6.12. Suppose $1 \leq \ell \leq(q \Leftrightarrow 1) / 2$ and let C_{t} be a path of flat reducible connections on Z in normal form such that $\left.C_{t}\right|_{T}=\frac{t+\ell-1}{q}$ idx for $t \in[0,1]$. Notice that C_{t} crosses one and only one \mathbb{C}^{2} jumping point (the one at $\frac{2 \ell-1}{2 q}$). Then

$$
S F\left(C_{t} ; Z ; P^{-}\right)=2
$$

Figure 9. $+\frac{1}{2}$ surgery on $K(2,5)$

Proof. First notice that $\Leftrightarrow 2 \leq S F\left(C_{t} ; Z ; P^{-}\right) \leq 2$. This is because the kernel of $D_{C_{t}}$ on Z with P^{-}boundary conditions is 2 -dimensional at the jumping points Γ and 0 -dimensional at non-trivial reducible connections. Thus two eigenvalues become zero at the jumping point.

We prove the theorem by comparing the rho invariant for gauge equivalent flat connections on the manifold X_{+1} obtained by +1 surgery on $K(2, q)$.

The path

$$
R_{1}(t)=(1 \Leftrightarrow t)\left(\frac{1}{4 q}, 0\right)+t\left(\frac{1}{2} \Leftrightarrow \frac{1}{4 q}+1 \Leftrightarrow q, 1 \Leftrightarrow q\right)
$$

(see Proposition $\frac{1}{6} . \bar{B}_{1}$. $)$ crosses the vertical axis at $t_{0}=\frac{1}{(q-1)(4 q-2)}$. Let $\left(m_{t}, n_{t}\right)$ be the composition of the short horizontal segment from $(0,0)$ to $\left(\frac{1}{4 q}, 0\right)$ with the path $R_{1}(t)$ for $0 \leq t \leq t_{0}$ and let A_{t} be the path of connections on X_{+1} which are flat along Z and correspond to the path $\left(m_{t}, n_{t}\right)$ by the construction of Subsection ${ }^{5} \mathbf{1} 1 \mathbf{1}$ of X_{+1}. From this path Γ we compute that $a=0, b=\Leftrightarrow 1, c=0$ and that $2 \int m^{\prime} n=\frac{1}{4 q(4 q-2)}$. Since A_{t} misses all the \mathbb{C}^{2} jumping points Γ

$$
\begin{aligned}
\varrho_{X_{+1}}\left(A_{1}\right) & =4(a \Leftrightarrow b+c) \Leftrightarrow 2 \Leftrightarrow 8 \int m^{\prime} n \\
& =2 \Leftrightarrow \frac{1}{q(4 q \Leftrightarrow 2)}
\end{aligned}
$$

Now consider the path obtained by translating $R_{1}(t)$ by the vector $(q \Leftrightarrow 1, q \Leftrightarrow 1)$. Proposition , $\overline{6} . \mathrm{Z}_{\mathrm{Z}}$ implies that this is another lift to \mathbb{R}^{2} of the arc $\widehat{R}_{1} \subset \mathfrak{R}_{S U(2)}^{*}(Z)$. Parameterized in the opposite direction (so that it starts on the horizontal axis) Ithis is the curve

$$
\widetilde{R}(t)=(1 \Leftrightarrow t)\left(\frac{1}{2} \Leftrightarrow \frac{1}{4 q}, 0\right)+t\left(\frac{1}{4 q}+q \Leftrightarrow 1, q \Leftrightarrow 1\right)
$$

This crosses the vertical line $x=q \Leftrightarrow 1$ when $\tilde{t}_{0}=1 \Leftrightarrow t_{0}=\frac{4 q^{2}-6 q+1}{4 q^{2}-6 q+2}$. Let $\left(\tilde{m}_{t}, \tilde{n}_{t}\right)$ be the composition of the short horizontal segment from $(0,0)$ to $\left(\frac{1}{2} \Leftrightarrow \frac{1}{4 q}, 0\right)$ with $\widetilde{R}(t)$ for $0 \leq t \leq \tilde{t}_{0}$. The corresponding path \widetilde{A}_{t} of connections crosses each of the \mathbb{C}^{2} jumping points exactly once and ends at \widetilde{A}_{1} Гwhich is gauge equivalent to A_{1}. Using the path Γ we compute as before that $\tilde{a}=q \Leftrightarrow 1$ and $\tilde{b}=q \Leftrightarrow 2$. To compute $\tilde{c} \Gamma$ observe that $\widetilde{R}(t)$ intersects the horizontal line $y=i$ in the point $\left(x_{i}, i\right)$ with $i<x_{i}<i+1$ if $i=1, \cdots, q \Leftrightarrow 1$. Thus the loop constructed
 $(2, n)$ (namely $(2,1)) \Gamma$ and in general encloses $j \Leftrightarrow 1$ lattice points of the form (j, n). Hence it encloses $1+2+\cdots+(q \Leftrightarrow 2)=\frac{(q-2)(q-1)}{2}$ lattice points. These are all enclosed clockwise Γ so $\tilde{c}=\frac{(q-2)(q-1)}{2}=q^{2} \Leftrightarrow 3 q+2$.

The integral $2 \int m^{\prime} n$ is equal to $\frac{\left(4 q^{2}-6 q+1\right)^{2}}{4 q(4 q-2)}$. Hence

$$
\begin{aligned}
\varrho_{X_{+1}}\left(\widetilde{A}_{1}\right) & =4(\tilde{a} \Leftrightarrow \tilde{b}+\tilde{c}) \Leftrightarrow 2 \Leftrightarrow 8 \int m^{\prime} n+2 S F\left(\widetilde{A}_{t} ; Z ; P^{-}\right) \\
& =4\left(q \Leftrightarrow 1 \Leftrightarrow(q \Leftrightarrow 2)+q^{2} \Leftrightarrow 3 q+2\right) \Leftrightarrow 2 \Leftrightarrow \frac{\left(4 q^{2} \Leftrightarrow 6 q+1\right)^{2}}{q(4 q \Leftrightarrow 2)}+2 S F\left(\widetilde{A}_{t} ; Z ; P^{-}\right) \\
& =4 \Leftrightarrow 2 q \Leftrightarrow \frac{1}{q(4 q \Leftrightarrow 2)}+2 S F\left(\widetilde{A}_{t} ; Z ; P^{-}\right)
\end{aligned}
$$

Since A_{1} and \widetilde{A}_{1} are gauge equivalent Γ their rho invariants are equal. Setting $\varrho_{X_{+1}}\left(A_{1}\right)=$ $\varrho_{X_{+1}}\left(\widetilde{A}_{1}\right)$ and solving for $S F\left(\widetilde{A}_{t} ; Z ; P^{-}\right)$gives

$$
S F\left(\widetilde{A}_{t} ; Z ; P^{-}\right)=q \Leftrightarrow 1
$$

Since there are exactly $(q \Leftrightarrow 1) / 2 \mathbb{C}^{2}$ jumping points Γ the path \widetilde{A}_{t} passes through all of them Γ and each contributes at most 2 to the spectral flow Γ the spectral flow across each one is 2 . This proves the theorem.

The following lemma will be useful in simplifying formulas.
Lemma 6.13. Let q, k, ℓ, i be positive integers with $q \geq 3, \ell \leq \frac{q-1}{2}$, and $i \leq k(q \Leftrightarrow 2 \ell+1)$. Let $[x]$ be the greatest integer less than or equal to x. Then

$$
\left[\frac{4 q(1 \Leftrightarrow i) \Leftrightarrow 2 \ell+1}{4 q k \Leftrightarrow 2}\right]=\left[\Leftrightarrow \frac{i}{k}\right]=\left[\frac{2 \ell \Leftrightarrow 4 q i \Leftrightarrow 1}{4 q k+2}\right] .
$$

Proof. Letting $x=\frac{4 q(1-i)-2 \ell+1}{4 q k-2}$ Cone can easily check that $0<x+\frac{i}{k}<\frac{1}{k}$. This implies that $[x]=\left[\Leftrightarrow \frac{i}{k}\right]$. Similarly 1 letting $y=\frac{2 \ell-4 q i-1}{4 q k+2} \Gamma$ one checks that $0<y+\frac{i}{k}<\frac{1}{k} \Gamma$ which implies $[y]=\left[\Leftrightarrow \frac{i}{k}\right]$.

We can now turn our attention to computing the gauge theoretic invariants. Suppose $k>0$ and let $X_{ \pm k}$ denote the manifold obtained by $\pm \frac{1}{k}$ surgery on $K(2, q)$. By Proposition : 6.8 . C the curves

$$
R_{\ell}(t)=(1 \Leftrightarrow t)\left(\frac{2 \ell-1}{4 q}, 0\right)+t\left(\frac{1}{2} \Leftrightarrow \frac{2 \ell-1}{4 q} \pm k(2 \ell \Leftrightarrow q \Leftrightarrow 1), 2 \ell \Leftrightarrow q \Leftrightarrow 1\right), \quad 0<t<1
$$

for $\ell=1, \ldots,(q \Leftrightarrow 1) / 2$ are lifts of the restrition map $\mathfrak{R}_{S U(2)}^{*}(Z) \Leftrightarrow \mathfrak{R}_{S U(2)}(T)$ under the branched cover $f_{ \pm k}: \mathbb{R}^{2} \Leftrightarrow \mathfrak{R}_{S U(2)}(T)$.

Consider first the case of positive surgeries. We would like to determine the flat connections which extend over X_{k} for $k>0$. Fixing ℓ, these correspond to points on $R_{\ell}(t)$ whose first coordinate is an integer. This happens when

$$
t_{i}=\frac{4 q(1 \Leftrightarrow i) \Leftrightarrow 2 \ell+1}{(4 q k \Leftrightarrow 2)(2 \ell \Leftrightarrow q \Leftrightarrow 1)},
$$

in which case the first coordinate of $R_{\ell}(t)$ is $1 \Leftrightarrow i \Gamma$ with $i \in\{1, \ldots, k(q \Leftrightarrow 2 \ell+1)\}$.
Fix ℓ and i with $1 \leq \ell \leq \frac{q-1}{2}$ and $1 \leq i \leq k(q \Leftrightarrow 2 \ell+1)$. Define the path $\left(m_{t}, n_{t}\right)$ to be the compositition of the horizontal line segment from $(0,0)$ to $\left(\frac{2 \ell-1}{4 q}, 0\right)$ with the path $R_{\ell}(t)$ for $t \in\left[0, t_{i}\right]$. Let A_{t} be the path of connections corresponding to $\left(m_{t}, n_{t}\right)$ by the construction of Subsection ${ }^{5} \overline{1} .1$. The endpoint Γ which we denote by $A_{\ell, i}$, extends flatly over X_{k}. Denote the integers a, \bar{b}, c associated to $A_{\ell, i}$ by $a_{\ell, i}, b_{\ell, i}, c_{\ell, i}$. Then Pusing Lemma ${ }^{-1} \overline{1} \overline{1} \overline{3}_{1}$ one sees that

$$
\begin{aligned}
a_{\ell, i} & =m_{t_{i}}=1 \Leftrightarrow i \\
b_{\ell, i} & =\left[n_{t_{i}}\right]=\left[t_{i}(2 \ell \Leftrightarrow q \Leftrightarrow 1)\right]=\left[\frac{4 q(1 \Leftrightarrow i) \Leftrightarrow 2 \ell+1}{4 q k \Leftrightarrow 2}\right]=\left[\Leftrightarrow \frac{i}{k}\right] .
\end{aligned}
$$

Inspecting the graph of $\left(m_{t}, n_{t}\right)$ one sees that $c_{\ell, i} \Leftrightarrow c_{\ell, i-1}=2\left(\Leftrightarrow b_{\ell, i-1}\right)$ and $c_{\ell, 1}=0 \Gamma$ so

$$
c_{\ell, i}=\Leftrightarrow 2 \sum_{j<i} b_{\ell, j}=\Leftrightarrow 2 \sum_{j=1}^{i-1}\left[\Leftrightarrow \frac{j}{k}\right]
$$

To calculate the Chern-Simons invariant Γ we compute the integral:

$$
\begin{aligned}
2 \int m^{\prime} n & =2 \int_{0}^{t_{i}}\left[\left(k \Leftrightarrow \frac{1}{2 q}\right)(2 \ell \Leftrightarrow q \Leftrightarrow 1)\right](2 \ell \Leftrightarrow q \Leftrightarrow 1) t d t \\
& =\frac{(4 q(1 \Leftrightarrow i) \Leftrightarrow 2 \ell+1)^{2}}{4 q(4 q k \Leftrightarrow 2)} .
\end{aligned}
$$

Since the horizontal line segment from $(0,0)$ to $\left(\frac{2 \ell-1}{4 q}, 0\right)$ (i.e. the first part of the path) passes through the \mathbb{C}^{2} jumping points at $\frac{1}{2 q}, \frac{3}{2 q}, \cdots, \frac{2[\ell / 2]-1}{2 q} \Gamma$ Theorem $!\overline{6} \overline{1} 122_{1}^{2}$ implies that $S F\left(C_{t} ; Z ; P^{-}\right)=2\left[\frac{\ell}{2}\right]$.

Applying Theorems invariants and the rho invariants of $A_{\ell, i}^{-}$. The results are summarized in the following theorem.

Theorem 6.14. Suppose $k>0$ and let X_{k} be the result of $\frac{1}{k}$ surgery on the $(2, q)$ torus k not. Let $A_{\ell, i}$ for $\ell=1, \ldots,(q \Leftrightarrow 1) / 2$ and $i=1, \ldots, k(q+1 \Leftrightarrow 2 \ell)$ be the flat connections on X_{k}
constructed above. Then

$$
\begin{aligned}
S F\left(\Theta, A_{\ell, i} ; X_{k}\right) & =2\left[\frac{\ell}{2}\right] \Leftrightarrow 2 i \Leftrightarrow 2\left[\Leftrightarrow \frac{i}{k}\right] \\
c s\left(A_{\ell, i}\right) & =\frac{(4 q(1 \Leftrightarrow i) \Leftrightarrow 2 \ell+1)^{2}}{4 q(4 q k \Leftrightarrow 2)}+2 \sum_{j=1}^{i-1}\left[\Leftrightarrow \frac{j}{k}\right] \\
\varrho_{X_{k}}\left(A_{\ell, i}\right) & =4\left[\frac{\ell}{2}\right]+2 \Leftrightarrow 4 i \Leftrightarrow \frac{(4 q(1 \Leftrightarrow i) \Leftrightarrow 2 \ell+1)^{2}}{q(4 q k \Leftrightarrow 2)} \Leftrightarrow 4\left[\Leftrightarrow \frac{i}{k}\right] \Leftrightarrow 8 \sum_{j=1}^{i-1}\left[\Leftrightarrow \frac{j}{k}\right] .
\end{aligned}
$$

Now consider the situation for negative surgeries on $K(2, q)$. We would like to determine the flat connections which extend over X_{-k}. (To make counting arguments simpler we still assume $k>0$). Fixing ℓ, these correspond to points on $R_{\ell}(t)$ whose first coordinate is an integer. This happens when

$$
t_{i}=\frac{4 q i \Leftrightarrow 2 \ell+1}{(q \Leftrightarrow 2 \ell+1)(4 q k+2)},
$$

in which case the first coordinate of $R_{\ell}(t)$ is i with $i \in\{1, \ldots, k(q \Leftrightarrow 2 \ell+1)\}$.
Fix ℓ and i with $1 \leq \ell \leq(q \Leftrightarrow 1) / 2$ and $1 \leq i \leq k(q \Leftrightarrow 2 \ell+1)$. Define the path $\left(m_{t}, n_{t}\right)$ to be the composition of the horizontal line from $(0,0)$ to $\left(\frac{2 \ell-1}{4 q}, 0\right)$ with $R_{\ell}(t)$ for $t \in\left[0, t_{i}\right]$. Let A_{t} be the path of connections corresponding to $\left(m_{t}, n_{t}\right)$ by the construction of Subsection ${ }^{1} \mathbf{1} .1$. The endpoint Γ which we denote by $A_{\ell, i}$, extends flatly over X_{-k}. We compute the numbers $a_{\ell, i}, b_{\ell, i}, c_{\ell, i}$ associated to $A_{\ell, i}$. First Γ

$$
\begin{aligned}
a_{\ell, i} & =m_{t_{i}}=i \\
b_{\ell, i} & =\left[n_{t_{i}}\right]=\left[t_{i}(2 \ell \Leftrightarrow q \Leftrightarrow 1)\right]=\left[\frac{2 \ell \Leftrightarrow 4 q i \Leftrightarrow 1}{4 q k+2}\right]=\left[\Leftrightarrow \frac{i}{k}\right]
\end{aligned}
$$

using Lemma ' ${ }^{6} \cdot \overline{1} \overline{3}^{\prime}$ ' Inspecting the graph of $\left(m_{t}, n_{t}\right)$ one sees that

$$
c_{\ell, i}=2 \sum_{j \leq i} b_{\ell, j}=2 \sum_{j=1}^{i}\left[\Leftrightarrow \frac{j}{k}\right] .
$$

Finally Γ

$$
2 \int_{0}^{t_{i}} m^{\prime} n=\Leftrightarrow \frac{(4 q i \Leftrightarrow 2 \ell+1)^{2}}{4 q(4 q k+2)} .
$$

Just as in the case of positive surgery C the first part of the path passes through the \mathbb{C}^{2} jumping points at $\frac{1}{22}, \frac{3}{2 q}, \cdots, \frac{2[\ell / 2]-1}{2 q}$ and thus $S F\left(C_{t} ; Z ; P^{-}\right)=2\left[\frac{\ell}{2}\right]$.

Theorems invariantsएand the rho invariants for all connections on X_{-k}.

Theorem 6.15. Suppose $k>0$ and let X_{-k} be the result of $\Leftrightarrow \frac{1}{k}$ surgery on the $(2, q)$ torus knot. Let $A_{\ell, i}$ for $\ell=1, \ldots, \frac{q-1}{2}$ and $i=1, \ldots, k(q+1 \Leftrightarrow 2 \ell)$ be the flat connections
constructed above. Then

$$
\begin{aligned}
S F\left(\Theta, A_{\ell, i} ; X_{-k}\right) & =2\left[\frac{\ell}{2}\right]+2 i \Leftrightarrow 2 \Leftrightarrow 2\left[\Leftrightarrow \frac{i}{k}\right] \\
c s\left(A_{\ell, i}\right) & =\Leftrightarrow \frac{(4 q i \Leftrightarrow 2 \ell+1)^{2}}{4 q(4 q k+2)} \Leftrightarrow 2 \sum_{j=1}^{i}\left[\Leftrightarrow \frac{j}{k}\right] \\
\varrho_{X_{-k}}\left(A_{\ell, i}\right) & =4\left[\frac{\ell}{2}\right] \Leftrightarrow 2+4 i+\frac{(4 q i \Leftrightarrow 2 \ell+1)^{2}}{q(4 q k+2)} \Leftrightarrow 4\left[\Leftrightarrow \frac{i}{k}\right]+8 \sum_{j=1}^{i}\left[\Leftrightarrow \frac{j}{k}\right] .
\end{aligned}
$$

Summing the rho invariants and applying Theorem ${ }^{6} \mathbf{6} \mathbf{7 I}_{1} y$ yields the correction term $\lambda_{S U(3)}^{\prime \prime}$ for any homology sphere obtained by surgeries on a $(2, q)$ torus knot. The results are summarized

	$\lambda_{S U(3)}^{\prime}\left(X_{k}\right)$	$\lambda_{S U(3)}^{\prime \prime}\left(X_{k}\right)$	$\lambda_{S U(3)}\left(X_{k}\right)$
$K(2,3)$	$3 k^{2} \Leftrightarrow k$	$\frac{\Leftrightarrow 24 k^{3} \Leftrightarrow 84 k^{2}+13 k}{6(6 k \Leftrightarrow 1)}$	$\frac{84 k^{3} \Leftrightarrow 138 k^{2}+19 k}{6(6 k \Leftrightarrow 1)}$
$K(2,5)$	$33 k^{2} \Leftrightarrow 9 k$	$\frac{\Leftrightarrow 200 k^{3} \Leftrightarrow 1620 k^{2}+151 k}{10(10 k \Leftrightarrow 1)}$	$\frac{3100 k^{3} \Leftrightarrow 2850 k^{2}+241 k}{10(10 k \Leftrightarrow 1)}$
$K(2,7)$	$138 k^{2} \Leftrightarrow 26 k$	$\frac{\Leftrightarrow 784 k^{3} \Leftrightarrow 9128 k^{2}+606 k}{14(14 k \Leftrightarrow 1)}$	$\frac{26264 k^{3} \Leftrightarrow 16156 k^{2}+970 k}{14(14 k \Leftrightarrow 1)}$
$K(2,9)$	$390 k^{2} \Leftrightarrow 58 k$	$\frac{\Leftrightarrow 2160 k^{3} \Leftrightarrow 33192 k^{2}+1714 k}{18(18 k \Leftrightarrow 1)}$	$\frac{124200 k^{3} \Leftrightarrow 59004 k^{2}+2758 k}{18(18 k \Leftrightarrow 1)}$

Table 3. The $S U(3)$ Casson invariants for homology spheres X_{k} obtained by $\frac{1}{k}$ surgery on $K(2, q)$

In completing this table we used the following fact. Fix q and let X_{k} denote the manifold obtained by $\frac{1}{k}$ surgery on $K(2, q)$. As noted after the proof of Theorem $\cdot \overline{6} 1.1$ for postive k the quantity $2 q(2 q \Leftrightarrow 1) \lambda_{S U(3)}^{\prime \prime}\left(X_{k}\right)$ is a cubic polynomial in k. Hence one can deduce $\lambda_{S U(3)}^{\prime \prime}\left(X_{k}\right)$ for all k by computing it in several examples and solving for the coefficients. Similar methods apply if k is negative.

The entries in this table are valid for any integer $k \Gamma$ not just $k>0$. Despite the slight differences in the statements and proofs of Theorems $\overline{6} \overline{1} 1$ $A_{i} \Gamma$ the resulting formulas give the same rational function. For $k=0$ the homology sphere is S^{3} which has $S U(3)$ Casson invariant 0 since it is simply connected.

As remarked above Γ for $k>0 \Gamma \pm \frac{1}{k}$ surgery on $K(2, q)$ is homeomorphic to the Brieskorn sphere $\Sigma(2, q, 2 q k \mp 1)$ up to a possible change of orientations. However Γ none of the quantities $\lambda_{S U(3)}^{\prime}, \lambda_{S U(3)}^{\prime \prime}$, and $\lambda_{S U(3)}$ depend on the choice of orientation. Thus this table also gives the $S U(3)$ Casson invariants of $\Sigma(2, q, 2 q k \pm 1)$ for $q=3$ Г5Г 7 Гand 9.
\&From this data we conclude that $\lambda_{S U(3)}$ is not a finite type invariant of low order.
Theorem 6.16. $\lambda_{S U(3)}$ is not a finite type invariant of order ≤ 6.

Proof. We argue by contradiction. Suppose $\lambda_{S U(3)}$ is a finite type invariant of order ≤ 6. Since $\lambda_{S U(3)}\left(S^{3}\right)=0$ and since it is invariant under change of orientation Γ it follows that there exist constants A and B such that

$$
\begin{equation*}
\lambda_{S U(3)}=A\left(\lambda_{2}+12 \lambda_{S U(2)}\right)+B \lambda_{S U(2)}^{2}, \tag{6.7}
\end{equation*}
$$

where λ_{2} is the second Ohtsuki invariant [$[\overline{2} \overline{6}]$ and $\lambda_{S U(2)}$ is Casson's invariant [i1]. Both of these invariants satisfy surgery formulas (see Theorem 4.3 in [$[\overline{2} \overline{0}]$ for λ_{2}). Thus $\overline{2}$ using our computations for surgeries on torus knots Γ we can determine the coefficients A and B in equation ($(\overline{6} \cdot \overline{1})$. But just from the examples provided by surgeries on the trefoil it follows that no such A and B exist. Thus $\lambda_{S U(3)}$ is not an invariant of finite type of order ≤ 6. Indeed Γ the pathological behavior of the Chern-Simons invariants makes it doubtful that $\lambda_{S U(3)}$ is a finite-type invariant at all.
6.5. Concluding remarks and open problems. The methods we have developed apply more generally than these computations suggest. For exampleГalthough we have restricted our attention to homology spheres obtained from surgeries on the $(2, q)$ torus knots 5 the same methods apply to any Seifert fibered homology sphere. For exampleГalthough $\Sigma(2,5,7)$ is not obtained by surgery on a torus knot in S^{3}, it can be described as surgery on a torus-like knot in a homology sphere to which our main results apply. More generally「one can compute the \mathbb{C}^{2} spectral flow Tthe Chern-Simons invariants and the rho invariants for Brieskorn homology spheres. ¿From this Γ one can deduce their $S U(3)$ Casson invariants in case $p=2$. On the other hand Γ computing $\lambda_{S U(3)}(\Sigma(p, q, r))$ when $p, q, r>2$ requires the use of perturbations and goes beyond the scope this article. This problem will be addressed in a later article.

Our methods can also be used to compute $\lambda_{S U(3)}$ for Dehn surgeries on knots other than torus knots e .g. Гthe figure eight knot. The idea is to first notice that one of the surgeries on the figure eight knot gives $\Sigma(2,3,7)$. This manifold can then be used as a reference point from which to calculate the invariants for other surgeries. This is especially interesting since most of the homology spheres obtained from surgery on the figure eight knot are hyperbolic. The crucial point in making this idea work is that our formula for splitting the spectral flow and the subsequent applications do not assume the path C_{t} of connections on Z is flat.

In another direction Cour technique for computing gauge theoretic invariants can be generalized to groups other than $S U(2)$ and representations other than \mathbb{C}^{2}. For example .one can adapt our approach to compute the ad $S U(2)$ spectral flow which arises in Floer's instanton homology and in asymptotic expansions of Witten's 3-manifold invariants (see [$[\overline{2} \overline{0}]$).

One interesting and difficult problem is to determine to the extent to which the Atiyah-Patodi-Singer rho invariants fail to be invariant under homotopy equivalence. The results of [in] show that the rho invariants of homotopy equivalent manifolds differ by a locally constant function on the representation variety. The cut-and-paste methods introduced here give a technique to compute this difference on the various path components of the representation variety. We plan to pursue this question in a future work.

In closing Γ we would like to mention several interesting questions raised by our results. Based on Theorem ' 6 . 16 it would be nice to know if $\lambda_{S U(3)}$ is a finite type invariant of any order. More importantly C can one express the coefficients of the cubic polynomials in the numerators of $\lambda_{S U(3)}\left(X_{k}\right)$ in Table ${ }^{1} \mathbf{6} .4 \mathrm{i}$ in terms of the Alexander or Jones knot polynomials of the corresponding knot? For this last question Γ note that the denominators
$2 q(2 q k \pm 1)$ appearing in Table ${ }^{\prime} \overline{6}-1{ }_{1}^{\prime}$ are just the denominators of the Chern-Simons invariants of $\Sigma(2, q, 2 q k \pm 1)$. We do not know if the Chern-Simons invariants are rational for general homology spheres Γ or Γ alternatively Γ if the quantity $p q(p q k \pm 1)$ associated to $\pm \frac{1}{k}$ surgery on $K(p, q)$ extends naturally to define an invariant for all homology spheres.

References

[1] S. Akbulut and J. McCarthy, Casson's invariant for oriented homology 3-spheres, an exposition Mathematical Notes no. 36, Princeton University Press, 1990.
[2] D. Auckly, A topological method to compute spectral flow, Kyungpook Math. J. 38 (1998), 181-203
[3] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, II, III, Math. Proc. Camb. Phil. Soc., 77 (1975), 43-69; 78 (1975), 405-432; 79 (1976), 71-99.
[4] H. U. Boden, Unitary representations of Brieskorn spheres, Duke J. Math., 75 (1994), 193-220.
[5] H. U. Boden and C. M. Herald, The SU(3) Casson Invariant for integral homology 3-spheres, J. Diff. Geom., 50 (1998), 147-206.
[6] B. Booss-Bavnbek and K. Wojciechowski, Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston, 1993.
[7] U. Bunke, On the gluing problem for the η-invariant, J. Diff. Geom., 41 (1995), 397-448.
[8] S. Cappell, R. Lee and E. Miller, A symplectic geometry approach to generalized Casson's invariant, Bull. AMS, New Series, 22, no. 2 (1990), 269-275.
[9] S. Cappell, R. Lee and E. Miller, On the Maslov index, Comm. Pure Appl. Math., 47 (1994), 121-186.
[10] S. Cappell, R. Lee and E. Miller, Self-adjoint elliptic operators and manifold decompositions: I. Low eigenmodes and stretching, Comm. Pure Appl. Math., 49 (1996) 825-866; II. Spectral flow and Maslov index, 49 (1996), 869-909.
[11] H. S. M. Coxeter and W. O. Moser, Generators and Relations for Discrete Groups, 2nd ed., Ergeb. u. Ihrer Grenz. Springer-Verlag, New Tork, 1965.
[12] M. Daniel, An extension of a theorem of Nicolaescu on spectral flow and the Maslov index, to appear in Proc. AMS.
[13] M. Daniel, Maslov index, symplectic reduction in a symplectic Hilbert space and a splitting formula for spectral flow, PhD Thesis, Indiana University, Bloomington, 1997.
[14] M. Daniel and P. Kirk A general splitting theorem for spectral flow, with an appendix by K. P. Wojceichowski, to appear in Michigan Math. Journal. imath.DG 99021420
[15] M. Farber and J. Levine, Jumps of the eta-invariant. With an appendix by S. Weinberger: Rationality of ϱ-invariants. Math. Zeit., 223 (1996),197-246.
[16] B. Fine, P. Kirk and E. Klassen, A local analytic splitting of the holonomy map on flat connections, Math. Ann., 299 (1994) 171-189.
[17] R. Fintushel and R. Stern Instanton homology of Seifert-fibered 3-spheres, Proc. Lond. Math. Soc. (3) 61 (1990), 109-138.
[18] T. Kato, Perturbation Theory of Linear Operators, 2nd ed., Grund. der math. Wissen. 132, Springer, Berlin 1980.
[19] P. Kirk and E. Klassen, Chern-Simons invariants of 3-manifolds and representation spaces of knot groups, Math. Ann., 287 (1990) 347-367.
[20] P. Kirk and E. Klassen, Computing spectral flow via cup products, J. Diff. Geom. 40 (1994) 505-562.
[21] P. Kirk and E. Klassen, Analytic deformations of the spectrum of a family of Dirac operators on an odd-dimensional manifold with boundary, Mem. Amer. Math. Soc. 124 (1996) no. 592 .
[22] P. Kirk and E. Klassen, The spectral flow of the odd signature operator and higher Massey products, Math. Proc. Camb. Phil. Soc., 121 (1997) 297-320.
[23] P. Kirk and E. Klassen, Continuity and analyticity of families of self-adjoint Dirac operators on a manifold with boundary, Illinois J. Math., 42 (1998) 123-138.
[24] P. Kirk, E. Klassen and D. Ruberman, Splitting the spectral flow and the Alexander matrix, Comm. Math. Helv., 69 (1994), 375-416.
[25] E. Klassen, Representations of knot groups in SU(2), Trans. Amer. Math. Soc., 326 (1991) 795-828.
[26] X.-S. Lin and Z. Wang, Fermat limit and congruence of Ohtsuki invariants, 1998 preprint gt-9810147.
[27] T. Mrowka and K. Walker, private communication of unpublished research, 1993.
[28] L. Nicolaescu, The Maslov index, the spectral flow, and splittings of manifolds, Duke Math. J., 80 (1995) 485-533.
[29] L. Nicolaescu, Generalized symplectic geometries and the index of families of elliptic problems, Mem. Amer. Math. Soc. 126 (1997) no. 609.
[30] C. Taubes, Casson's invariant and gauge theory, J. Diff. Geom., 31 (1990), 547-599.
[31] K. Walker, An extension of Casson's invariant, Annals of Math Studies 126, Princeton University Press, 1992.

Ohio State University, Mansfield, Ohio 44906
E-mail address: boden@@math.ohio-state.edu
University of Nevada, Reno, Nevada 89557
E-mail address: herald@@unr.edu
Indiana University, Bloomington, Indiana 47405
E-mail address: pkirk@@indiana.edu
Florida State University, Tallahassee Florida 32306
E-mail address: klassen@@zeno.math.fsu.edu

