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x0. Introduction

In this note we construct a non-singular algebraic variety VG encoding the inci-
dence information of a simple graph G, by a sequence of blow-ups of a projective
space along suitable linear subspaces. The aim is to translate into the geometry
of VG the combinatorial information about G; we �nd that this can be done with
surprising ease and e�ciency.

For example, we prove that the chromatic polynomial of the graph|that is, the
polynomial giving for each m > 0 the number of ways in which G can be colored
using m colors, so that no two adjacent vertices are assigned the same color|is
(up to a power of the variable) the intersection product of a �xed class 
 in A1VG
with a polynomial S(t) in PicVG[t]: the class is de�ned as the Poincar�e dual of
the pull-back of the hyperplane class, with respect to a natural basis of PicVG,
and S(t) is also easily de�ned as a combination of the exceptional divisors arising
in the blow-up construction. In x1 we describe the construction for graphs and
state the above result precisely (but with no proofs), as a sales pitch for the rest of
the paper, which examines the construction more carefully and gives deeper|but
necessarily more technical|results.

In fact the right level of generality to perform our construction is that of `com-
binatorial geometries which are projectively coordinatizable over some �eld'; for

short (and a little improperly) we will refer to these asmatroids. Our construction
can be performed starting from any (loopless) matroid embedded in a projective
space, and specializes to the one in x1 for the cycle matroid of a graph. We give
this more general construction in x2: roughly, the variety of a matroid is obtained

by blowing-up the ambient projective space along the 
ats of the matroid, in or-
der of increasing dimension. We prove the above result concerning the chromatic
polynomial of a graph by showing that the characteristic polynomial of a matroid
equals the intersection product of a �xed 1-class by a suitable polynomial S(t) in

the Pic of its variety. A question that then arises naturally regards the positivity

of S(m) for a given m and a given class of matroids: we determine a large class

(including cycle matroids of graphs) for which a close relative S(m) of S(m) is
generated by global sections for all positive m.

To support the point that our construction may o�er a new angle on the the-

ory of characteristic polynomials of matroids, in x3 we give `geometric proofs' of a

few basic results on these (our source of examples here is Zaslavsky's contribution
to [W2]). The deletion-contraction rule and Stanley's `modular factorization the-

orem' for example follow easily from the functoriality of the construction. Most
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likely these proofs could be translated word by word into standard combinatorial

proofs; our point here is that our arguments are suggested by `algebro-geometric
intuition', and the hope is that this could lead to a fresh approach to the combi-

natorics. Also, we hope x3 will help to advertise this beautiful branch of combi-

natorics among the geometers.

Our favorite example of the interplay between the two �elds is the following:
if we were to hand our construction to a random algebraic geometer, and asked

to provide us with an interesting numerical invariant of these objects, she would

likely propose the intersection product of the canonical divisor (which is the �rst

place where to look for an invariant) with the above class 
 (dual to the pull-back

of the hyperplane class, thus a priori de�ned for all varieties produced by the
construction). The result would essentially be, as we show in x3, Crapo's Beta

invariant of the matroid; the basic properties of this latter (like additivity, or

vanishing for disconnected matroids) all follow from the adjunction formula for
the canonical divisor.

One feature of our construction is that it produces an in�nite tower of varieties,
rather than a single one: the construction depends on a starting Pn in which the
matroid is embedded, and we get a non-singular variety V n of dimension n for each
n strictly larger than the rank of the matroid. In addition, each V n is naturally
embedded as a divisor in V n+1, in a way compatible with the construction: for
example, the divisor S(m) on V n is the restriction of the corresponding divisor on
V n+1, etc. The facts discussed in the �rst three sections hold uniformly for each
variety in the sequence, so we may choose one arbitrarily if we wish. We think
however that interesting information can be extracted from the whole tower: one
such facts is observed in x4. For simplicity, assume the matroid to be regular (for
example, graphical) and consider the rational maps V n

9 9 KPN de�ned by S(m).
De�ne d(m;n) to be the degree of the (closure of the) image of this map as a cycle
of dimension n. These numbers are invariants of the starting matroid which, we
argue, encode interesting information. d(m;n) is hard to compute in general (this
is almost always the case for the degree of the image of a rational map!); speci�c

examples can however be worked out. Here is a table of d(m;n) for a few small
values of m;n, for the varieties constructed starting from the complete graph on
three vertices (these entries and the table in x4 were checked with Schubert [K-S]):

d(m;n) m = 2 3 4 5

n = 3 42 644 3888 15216

4 210 6312 64746 388704

5 930 58312 1045476 9756192

6 3906 529244 16764894 244093680

7 16002 4776396 268386264 6103281168

And here is the general result given in x4:

Theorem. If n is prime and greater than the rank of the matroid, then

d(m;n) � p(m) (mod n) ;

where p(m) is the characteristic polynomial of the matroid.

For example, p(m) = (m � 1)(m � 2) for the complete graph on three vertices,

and e.g., 6103281168 � 4 � 3 (mod 7).
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We note that, by this result, the statement of the celebrated four-color-theorem

tranlates into: For a planar graph with N vertices, there exists a prime n � N

such that d(4; n) is not a multiple of n.

The above table will immediately convince the reader that it is not true that

d(m;n) � p(m) (mod n) for all n.

The numbers d(m;n) above can also be de�ned without ever leaving the original

projective space from which the construction starts: they can be written in terms

of the Segre classes of speci�c schemes supported on a linear subspace of the

projective space. A congruence formula similar to the above can then be written

for the zero-dimensional term of these Segre classes; see x4 for a precise statement.

Translating coloring problems in terms of projective geometry is not a new

idea: the `critical problem' ([C-R], Chapter 16) is the foremost such construction.
We also know of a di�erent and more algebro-geometric interpretation of these
problems due to R. Miranda ([M]; see also [C-M]). A feature common to the
critical problem and Miranda's approach is that both work by coordinatizing the
relevant combinatorial geometry over a �nite �eld, which in a sense keeps track
of the number of colors used. Our construction has a di�erent 
avor in that it is
performed in any characteristic over which the relevant matroid can be embedded
(for example over C ; graphical matroids can be embedded in any characteristic);
di�erent colorings correspond to di�erent divisors within this one construction.
Of course we would be very interested in learning about relations between our
construction and Miranda's or the critical problem.

Granted, we o�er no new coloring theorem here. One missing ingredient is an
algebro-geometric tool to tell a priori when a variety VG as above does in fact arise
from a planar graph as per our construction: the next natural step to take in the
program is a suitable translation of Kuratowski's theorem in this language.

A note about our references: we draw most of our combinatorics know-how
from Crapo and Rota's `Combinatorial geometries' ([C-R]) and from the excellent
contributions of Brylawski and Zaslavsky to [W1], [W2]. We found these references
extremely helpful for their thoroughness and accessibility to the complete outsider,

of which this writer is a perfect specimen.

Finally, a note for the hasty reader: the reader who feels confortable with
matroids can safely skip x1, which simply specializes the construction to graphs.

Also, x4 can be read independently of x3.

x1. The chromatic polynomial as an intersection product

Let G be a graph (loopless and with no parallel edges). Place the vertices of

G at linearly independent points of a projective space Pn (over any algebraically

closed �eld), and draw for each edge the line joining the corresponding vertices.
Intersecting the resulting reducible curve with a general hyperplane gives a con-

�guration of points ek (ordered in any fashion), each corresponding to an edge
of the graph, which is the starting point of our construction: in x2 we will study

more generally the construction obtained by starting with any �nite collection
of points in a projective space. Our goal is to extract information from the lin-

ear dependence of the points ek; the above is the standard way to embed in a
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projective space the `cycle matroid' corresponding to the graph. The (point cor-

responding to an) edge e is in the subspace spanned by edges e1; : : : ; ed if and only
if e joins vertices in one connected component of the subgraph of G determined

by e1; : : : ; ed (cf. e.g. [W1], p.19, or [C-R], chapter 6). For example, three of the

ek's are collinear in P
n precisely if the corresponding edges form a circuit in G.

Now for the construction. Consider all dimension-d subspaces xdr spanned by

the ek in Pn, listed by dimension and otherwise in any order: so in particular the

x0r 's are simply the ek's. Also, consider the subspaces y
d
r obtained by intersecting

collections of the x's, provided these do not appear already in the list of the x's.

Observe that the family of subspaces of Pn thus obtained is closed with respect
to intersection.

Let V0 = Pn, and inductively let Vd+1, d � 0, be the blow-up of Vd along

the proper transforms of the xdr 's and ydr 's. Blowing up along the subspaces of
dimension d separates the proper transforms of the subspaces of dimension d+ 1
containing them, so at each stage the centers of the blow-ups are necessarily
disjoint, and the blow-ups can be performed in any order: in other words, these
varieties do not depend on the speci�c ordering given to the x's and y's (in each
dimension). Since G is �nite, this construction stops at some stage, and we let VG
be the resulting variety. Of course VG depends on the dimension n of the initial
projective space Pn; however, in most of the paper this will not play a rôle.

In VG we single out several natural divisor classes: the pull-back H0 of the
hyperplane class from Pn; the pull-backs Ed

r of the exceptional divisors arising
by blowing up along xdr ; the pull-backs F d

r of the exceptional divisors arising by
blowing up along ydr ; and the classes Hd

r of the proper transforms of the general
hyperplanes containing xdr . We de�ne a divisor class S(t) as follows: let R be
the dimension of the subspace xR spanned by all the x0r (R + 1 equals then the
number of edges in a spanning forest of G; equivalently, the number of vertices of
the graph minus the number of its connected components|cf. [W1], 6.1.2); then
set

S(t) = tR+1H0 �
X
d;r

tR�dEd
r :

Remark. Notice that the F 0s are not used in this de�nition: in fact, most computa-
tions in the following can be performed `modulo F ' (that is, modulo combinations

of F d
r 's). A construction could be concocted without introducing the auxiliary

subspaces ydr and the corresponding F 's, and still obtaining many of the results
of the paper. We have chosen this alternative path because the construction as
presented here is more natural in that it is independent of the ordering of the

subspaces, and moreover blowing-up along the y's makes the Hd
r 's generated by

global sections (in fact, this amounts to resolving at one time all maps de�ned

in terms of line bundles corresponding to nonnegative combinations of the Hd
r 's).

Is there an equally natural construction that does not invoke the use of these
`auxiliary' subspaces and divisors?

The following is the prototype of the results in the paper. We defer more

general statements (and proofs) to later sections. Observe that

H0, the H
d
r , and the F d

r
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give a basis of the Pic of VG. Now by Poincar�e duality we can �nd a class 
 2

A1(VG) dual to H0 with respect to this basis: that is, such that

H0 � 
 = 1; Hd
r � 
 = 0; F d

r � 
 = 0 for all d; r.

In other words, given a divisor D in VG, D � 
 picks the coe�cient of H0 in the

(unique) expression of D in terms of H0, H
d
r 's, and the F d

r 's.

Theorem 1.1. Let c be the number of connected components of G. Then the

number of ways in which G can be colored properly with m colors (that is, so
that no two adjacent vertices are given the same color) is given by the intersection

product

mc S(m) � 
 :

Corollary 1.2. G can be colored properly withm colors if and only if S(m)�
 6= 0.

Examples. (1) If G has at least 1 edge, then S(1) = H0�
P

d;r E
d
r is, modulo F ,

the class of the proper transform of the hyperplane containing all the xdr 's; so (by
de�nition of 
) S(1) � 
 = 0. If G has no edges, then VG = Pn, S(1) = H0, and
thus S(1) � 
 = 1. The corresponding facts about proper colorings are of course
trivial.

(2) Let G be the complete graph on 4 vertices. The six x0r are placed at the
points of intersection of four general lines of a plane; on each of these four lines
x11; : : : ; x

1
4 lie three of the x0k. There are three pairs of x

0
k's not lying on the same

one line in this con�guration; these pairs determine three more lines x15; x
1
6; x

1
7.

Finally, there is one plane x2 containing the whole con�guration. By using the
de�nition of 
, we �nd

E0
k � 
 = 1; k = 1; : : : ; 6;

E1
r � 
 = �2; r = 1; : : : ; 4; and E1

r � 
 = �1; r = 5; 6; 7;

E2 � 
 = 6 ;

so

mS(m) =m (m3
� 6 � 1m2

� (�2 � 4� 1 � 3)m � 1 � 6)

=m4
� 6m3 + 11m2

� 6m = m (m� 1) (m � 2) (m� 3)

as it should be: each vertex must be assigned a di�erent color from the palette.

We can prove a stronger statement than Theorem 1.1, which exploits one of

the basic features of the construction: VG encodes at once the combinatorial
information of G and of all its contractions. Each xdr corresponds to a choice of
edges of the original graph; let Gd

r be the graph obtained from G by contracting

each edge in this collection, and removing parallel edges that might be created in

the process (note: no loops arise by this operation). Also, let 
dr be the dual of
Hd
r in the above basis. Up to a power of m, then, S(m) � 
dr counts the proper

m-colorings of the contraction Gd
r . (This will follow from Theorem 2.3 in the more

general setting of x2).
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In other words, denote by S(m) the divisor equivalent to S(m) modulo F and

in the span of H0;H
d
r : then the above says that

G and all its contractions can be colored properly with m colors if and only if S(m)

is in the interior of the cone generated by H0;H
d
r in PicVG.

For example, the four-color-theorem ([A-K]) says that if G is a planar graph, then

S(4) is in the interior of the cone generated by H0;H
d
r (since all contractions of a

planar graph are planar).

We end the section by remarking that in the case we have considered here (that

is, varieties arising from graphs), the S(m), m > 0, turn out to be all generated

by global sections (see Proposition 2.4): indeed, the Hd
r 's are, and, by the above

results, S(m) is a nonnegative combination of the H0 and the Hd
r 's in the graph

case. This does not seem obvious a priori, for it is not true for the analogous

construction for matroids examined in the next section (we will �nd there a class

of matroids for which this holds, cf. Proposition 2.5). In the graph case, it follows
that for positive m there always is a hypersurface in Pn generically smooth along
the maximal xR, with multiplicity m along the xR�1r 's, multiplicity m2 along the
xR�2r 's, : : : , multiplicity mR at the x0r 's and degree mR+1: simply take general

hyperplanes containing the xdr 's as dictated by the expression of S(m) in terms

of H0 and the Hd
r 's. The class S(m) is then the class of the proper transform of

such a hypersurface.

Conversely, we may view the above as a recipe to compute the chromatic poly-
nomial of a graph: given the collection of xdr 's obtained as above, construct a
hypersurface by taking enough general hyperplanes containing each xdr to satisfy
the above multiplicity prescription (multiplicity 1 along the maximal subspace
xR, t along codimension 1 subspaces, t2 along codimension 2, etc.). By the above,
this will always be possible: the number needed at xdr is S(t) � 
dr � 0; and the
number of hyperplanes not containing any of the xdr 's, needed to get a hypersur-
face of degree tR+1, multiplied by t to a power equal to the number of connected
components of G, will give the value at t of the chromatic polynomial of G (this
is of course nothing but \M�obius inversion" at work).

x2. Matroid varieties

In section 1 we gave the standard embedding in a projective space of the `cycle
matroid' associated with the graph G, and constructed a variety VG from this
data. The construction can be performed for the lattice L = L(C) of subspaces

spanned by any �nite collection C of points in Pn. L is (partially) ordered by
inclusion; 0 will be the empty set (the minimum of the lattice), 1 the maximal
subspace, spanned by all points; we require this to have codimension at least 2 in

Pn. We denote elements of L by letters x; y; z; : : : , by � the ordering in L, and by
_;^ resp. the join and meet in the lattice. The `rank' r(x) of x 2 L; x 6= 0; is one
plus its dimension as a subspace of Pn: so the points of C are the rank-1 elements

of L. The rank of 0 = ; is 0; the `rank of L' is r(L) = r(1).

Now VL is constructed as in section 1. First we close the family L of subspaces of

Pn with respect to intersection: letM be the family of subspaces =2 L obtained by
intersecting collections of elements of L; we extend rank and ordering to elements
of M. Next, VL is obtained from Pn by blowing up the (proper transforms of

the) x 6= 0 in L and M in order of increasing dimension; again we observe that
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since L [M is closed under intersections, blowing-up all x of rank r separates

the proper transforms of the subspaces of rank r + 1, hence the construction is
independent of the speci�c order in which the blow-ups are executed (within each

rank).

We note that VG = VL if L corresponds to G as in section 1. Keeping the same

style of notations as in x1, we let Hx be the class of the proper transform of the
general hyperplane containing x (so the pull-back of the hyperplane class is H0),

we let Ex be the pull-back of the exceptional divisor over x 2 L; x 6= 0, and Fx
be the pull-back of the exceptional divisor over x 2 M. For x 2 L, 
x is a 1-class

such that 
x � Hx = 1; 
x � Hy = 0 for all y 2 L; y 6= x, and 
x � Fz = 0 for all

z 2 M. S(t) is the class

S(t) = tr(1)H0 �
X

x2L;x6=0

tr(1)�r(x)Ex

(as in x1, we will soon introduce a class S(t) equivalent to S(t) `modulo F ' but
somewhat better behaved.)

x2.1. Compatibilities with contractions, deletions, etc. We will now show
how the construction behaves with respect to three basic matroid operations. All
the results in x3 will essentially follow from a closer look at the compatibilities
sketched below; a detailed analysis of the functorial properties of the construction
is well beyond the scope of this note. For the hasty reader: only contractions will
be used in the rest of this section.

Contractions. The variety VL contains a `compatible' copy of VL=x = V[x;1] for
each x 2 L. More precisely: the �ber of the exceptional divisor obtained when
blowing-up along x 2 L is a projective spacePn�r(x), met by all and only the z � x

in L. The lattice of subspaces these form in this projective space is the interval
[x; 1], isomorphic to the `geometric contraction' L=x of L by x ([W1], p. 141). In
terms of graphs, this is the contraction determined by a choice of a collection of

edges, as described in x1. Now the blow-up process is compatible with restriction
to this Pn�r(x): the general �ber of Ex (that is, the proper transform of Pn�r(x)

in VL) is the blow-up of Pn�r(x) along its intersection with the z 2 L[M, z � x,
that is nothing but a copy of VL=x. Further, all expected compatibilities among

the de�nitions of the relevant classes hold; for example, the class 
x in VL is the

push-forward of the class 
0 in VL=x, etc. Typically, anything proved about L by
means of VL will automatically restrict to a statement about all its contractions.

Modular elements. At the same time, VL also contains a copy of V[0;x] (where
[0; x] denotes the lattice of elements z 2 L such that 0 � z � x), provided that x
be modular. An element x 2 L is `modular' if x^ z = x\ z for all z in L (where ^

denotes the meet in the lattice, while \ denotes intersection in Pn); for example,
all rank-1 elements of L are modular. Now consider any subspace Px of Pn, of
dimension > r(x) and intersecting 1 2 L precisely along x; then

Claim 2.1. If x is modular, then the proper transform of Px in VL is isomorphic
to a variety V[0;x].

Proof. Px contains a copy of [0; x]. Let Mx denote for a moment the set of

subspaces de�ned when constructing V[0;x] (that is, all y \ z =2 [0; x], where y; z 2
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[0; x]). Then it is easily checked that modularity implies [0; x] = fz \ Px; z 2 Lg
and Mx = fz \Px; z 2 Mg. Taking the proper transform of Px amounts then to
performing precisely the same sequence of blow-ups producing V[0;x] as dictated

by the construction. �

Deletions. The construction is also compatible with substructures. Let C0 be a

subset of the set of rank-1 elements of L (that is, of the original set C of points in

Pn generating L); these generate a sublattice L(C0) of L, a `deletion' of L. Then

there is a map VL �! VL(C0): this follows from the universal property of blow-ups,

once we observe that the inverse image of all subspaces generated by elements
of C0 (and all their intersections) are Cartier divisors in VL. For example, for

C0 = ;, the resulting map VL �! VL(;) = Pn is simply the sequence of blow-ups

de�ning VL.

Nesting. Finally, we observe that we get a variety V n = VL by blowing up Pn

as above, for each n > r(1); most results of the paper do not depend on the speci�c
choice of n. These di�erent varieties are nested into each others like Russian dolls:
for all n > r(1), V n can be embedded as a divisor of class H1 in V n+1. Indeed,
the proper transform of any Pn containing 1 2 L in Pn+1 is a copy of V n: this is
Claim 2.1 for x = 1 (1 is always modular!).

x2.2. The characteristic polynomial. Now for a bit of well known and beauti-
ful combinatorics, and its translation into the intersection ring of VL. Recall ([W2],
Chapter 7) that the `M�obius function' of a lattice L is the function �L : L�L �!Z
satisfying

X
x�y�z

�L(x; y) =

�
0 if x 6= z

1 if x = z
if x � z; �L(x; z) = 0 if x 6� z

We will write � for �L if no ambiguity is feared. The `characteristic polynomial'
of L is the polynomial

p(L; t) =
X
x2L

�(0; x) tr(1)�r(x)

Now the key observation is the following (see for example [W2], x7.5): the number

of proper colorings of a graph G with t colors (that is, the `chromatic polynomial'
of G) is given by

tc p(L; t) ;

where c is the number of connected components of G and L is the lattice deter-
mined by G. So Theorem 1.1 will be proved once we show that for any matroid
in Pn as above:

Theorem. p(L; t) = S(t) � 
0 :

In turn, given the de�nition of S(t), this is proved once we observe that �(0; 0) =

1 = H0 � 
0, and show that �(0; z) = �Ez � 
0 for z 2 L; z 6= 0. In fact:

Lemma 2.2. Ez � 
x = ��(x; z) for all z 2 L; z 6= 0.

Proof. First we observe that by restricting to the general �ber of Ex we may

assume x = 0 (by compatibility with contractions). So we just have to show
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�(0; z) = �Ez � 
0 for z 6= 0. By de�nition of the M�obius function, this amounts

to showing

�(0; 0) +
X

0<y�z

(�Ey � 
0) = 0

whenever z 6= 0. But observe that the construction gives

Hz = H0 �
X
y2L

0<y�z

Ey �
X
x2M
x<z

Fx ;

so that

�(0; 0) +
X

0<y�z

(�Ey � 
0) = 1 +
X

0<y�z

(�Ey � 
0)

= (H0 �
X

0<y�z

Ey �
X
x<z

Fx) � 
0

= Hz � 
0 = 0

by de�nition of 
0. �

As pointed out, this lemma implies the theorem above, and this in turn implies
Theorem 1.1. There is a substantial advantage, however, in giving a more com-
prehensive statement dealing with all contractions of L at once. For this, let S(t)
denote the divisor equivalent to S(t) modulo F and in the span of the Hx's. Note

that S(t) and S(t) have the same intersection numbers against any combination
of the 
x, x 2 L.

Theorem 2.3. Denoting by L=x �= [x; 1] the sublattice of L consisting of all
z 2 L such that x � z:

S(t) � 
x = p(L=x; t)

for all x 2 L. In other words,

S(t) =
X
x2L

p(L=x; t)Hx :

Proof.

S(t) � 
x = tr(1)H0 � 
x �
X

y2L;x6=0

tr(1)�r(y)Ey � 
x

=
X
y2L

tr(1)�r(y)�(x; y) by Lemma 2.2

=
X
y�x

tr(1)�r(y)�(x; y)

= p([x; 1]; t) = p(L=x; t) : �

Theorem 2.3 implies the extension of Theorem 1.1 discussed in section 1.
S(t) is easier to de�ne, while S(t) is better behaved in some respects. For

example, S(m) is automatically globally generated for m > 0 in the graph case
(as mentioned in x1), because:
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Proposition 2.4. Non-negative linear combinations of the Hx's are generated by

global sections.

Proof. We only need to show that each Hx is generated by global sections. Now

H0 clearly is, since it `already' is in Pn; for x 6= 0, observe that any x 2 L is the
intersection of n + 1 � r(x) general hyperplanes containing it. In the construc-

tion, every center of blow-up is either included in the proper transform of x, or

it is disjoint from it (note: this would not necessarily be the case if we didn't

blow-up along the elements of M as well!). It follows that the proper transforms

of the hyperplanes still intersect exactly along the proper transform of x after each
blow-up, and get separated when x itself is blown up. They give then n+1� r(x)

sections of Hx generating it globally. �

Remark. What was shown in this proof was in fact that n + 1 � r(x) general
representatives of Hx have empty intersection in VL.

In the graph case, the coe�cients of Hx in S(t) are (up to powers of t) chro-

matic polynomials, thus nonnegative at positive integers: so S(m) is in the cone
generated by the H� in PicVG for all positive m, and is globally generated.

This does not seem at all obvious a priori, say from the de�nition of S(t); in
fact, it is not true for arbitrary matroids! For example, consider the matroid
L4 generated by four collinear points: if S(2) were generated by global sections,
then (at least in char. 0) by Bertini there would be a nonsingular irreducible

hypersurface of class S(2) in VL4 ; this would map down to Pn to a hypersurface of
degree 4, generically smooth along a line, and having multiplicity 2 at (at least) 4
points on this line. This cannot be: the general plane section (through the line) of
this hypersurface would be a plane quartic curve containing a line, whose residual
cubic meets the line at four distinct isolated points. Thus S(2) is not generated
by global sections in general.

It would be interesting to �nd a characterization of planar graphical matroids
in terms of properties of the divisors S(m). A more ambitious goal would be to
�nd for each given matroidM an algebro-geometric property of VL that can signal

whether L is the lattice of a matroid none of whose minors is isomorphic to M .

Such a tool would allow us to mirror the characterization of classes of matroids in
terms of `excluded minors' (see pp. 146{7 in [W1]); in particular a characterization

of varieties arising from planar graphical matroids would follow.

The only result of this sort that we know is the following. Following the common
terminology, we denote by L4 the `four point line' of the above example, and by
F7 the `seven point plane' (that is, the matroid de�ned by the projective plane

over the 2-element �eld).

Proposition 2.5. Let L be the lattice corresponding to a given matroid M , and
S(m) the divisor on VL de�ned as above. Then the following are equivalent:

(1) S(2) and S(3) are in the cone generated by the Hx, x 2 L;
(2) M has no minor isomorphic to L4 or F7;

(3) All S(m), m > 0, are in the cone generated by the Hx, x 2 L.

Remark. This amounts to saying that the class de�ned in (2) is precisely the
class of matroids whose contractions all have characteristic polynomials which are
non-negative at each positive integer. This must be a well-known characterization
in combinatorics, but we could not trace it in the literature; we apologize for
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the missing reference and provide the following straightforward (and hopefully

correct) argument.

Proof. (3) =) (1) is trivial.

(1) =) (2): if M has a minor isomorphic to L4, then by the `scum theorem'

(Prop. 7.4.11 in [W1]) L4 is obtained from M by a contraction M=I followed by

a sequence of deletions: L4 =M=I � e1 � � � � � er. Now p(L4;m) = m2� 4m+3,
so p(M=I � e1 � � � � � er; 2) = p(L4; 2) = �1; we claim that this implies some

contraction of M has negative characteristic polynomial at 2. Indeed, by [W2],

Theorem 7.2.4,

p(M=I � e1 � � � � � er ; 2) = p(M=I � e1 � � � � � er�1; 2)

+ p(M=(I _ er) � e1 � � � � � er�1; 2)

if er is not an isthmus in M=I � e1 � � � � � er�1, and

p(M=I � e1 � � � � � er; 2) = p(M=I � e1 � � � � � er�1; 2)

if er is an isthmus in M=I � e1 � � � � � er�1. In either case, the polynomial is
necessarily negative at 2 for a contraction of M followed by fewer deletions: the
claim follows. Finally, the coe�cients in the expression of S(2) in terms of the
H� are precisely the values of the characteristic polynomials of the (geometric)

contractions of M (by Theorem 2.3), so we can conclude that S(2) is not in the
cone generated by the H�. The argument for F7 is entirely similar, given that
p(F7;m) =m3 � 7m2 + 14m� 8 is negative for m = 3.

(2) =) (3): the class de�ned in (2) is closed under contractions, so we just
need to show that the characteristic polynomial of any matroid in it is nonnegative
at positive integers. By a result of Seymour (cf. [W1], p. 147), the class is in fact
the class of `direct sums and 2-sums of regular matroids and copies of F �7 '. Now
observe that p(F �7 ;m) = m4 � 7m3 + 21m2 � 28m + 13 is � 0 for all integer
m > 0; also, regular matroids have nonnegative characteristic polynomial because

of a result of Crapo (Theorem III in [C]: the value of the polynomial at m is
the number of `H-coboundaries with kernel 0', for H a group of order m). Next,
nonnegativity is preserved by direct sums by Theorem 7.2.4 (ii) in [W2]; so we
just have to show it is preserved under 2-sums. Now the 2-sum of two matroids

M1;M2 is obtained from their parallel connection by deletion of the base point:
in the notation of [W1], p. 180

S2(M1;M2) = P (M1;M2) � p ;

where p is not an isthmus of either M1 or M2. It follows that p is not an isthmus

of P (M1;M2), so applying 7.2.4 (i) from [W2], 7:6:7P from [W1], 7.2.9 and 7.2.4
(ii) from [W2] we get

p(S2(M1;M2);m) = p(P (M1;M2);m) + p(P (M1;M2)=p;m)

= p(P (M1;M2);m) + p(M1=p�M2=p;m)

=
p(M1;m) p(M2;m)

m� 1
+ p(M1=p;m) p(M2=p;m) :
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each summand on the right is non-negative, so we are done. �

All matroids representable over any �eld, and in particular all graphical ma-

troids, belong to the class de�ned in this proposition; however, for such matroids

one can prove (3) more directly, cf. the discussion following Proposition 2.4. For

all matroids satisfying (3), the line bundles corresponding to S(m) are globally

generated, so they de�ne maps from the variety of the matroid to a projective

space. We feel that studying these maps would be quite fruitful; we will obtain a

simple result about the degree of the image of such maps in x4.

Of course a characterization of planar graphs in a fashion similar to Proposi-
tion 2.5 would be desirable.

x3. Characteristic polynomial basics,

Crapo's invariant: a geometric viewpoint

In this section we run through basic material concerning characteristic polyno-
mials, illustrating it in the context of the construction introduced in x2. The reader
is encouraged to compare the `geometric' proofs given here with more standard
combinatorial arguments, as presented for example in Chapter 7 of [W2].

The general strategy is the following: in a given situation, write the most
fundamental relation suggested by the geometry; then applying the results in x2
will yield an equally fundamental combinatorial statement. As an appetizer, the
following is the simplest possible example of such an argument:

Proposition 3.1. With notations as in x2,
P

x2L 
x equals the class of the pull-
back ` of a line from Pn.

Proof. Dot both classes against all divisors. �

And here is the translation into combinatorics:

Corollary 3.2.
P

x2L p(L=x; t) = tr(1)

Proof. By Theorem 2.3 and Proposition 3.1, the left-hand-side is S(t) �
P

x2L 
x =

S(t) � `. But the pull-back of a line vanishes against all exceptional divisors, so

S(t) � ` = tr(1)H0 � ` = tr(1). �

The other examples in this section are a little more complex, but motivated by

the same simple geometric intuition.

x3.1. Deletion-contraction rule. Let e 2 C be a rank-1 element in L|that is,

one of the points in the set used to generate the subspaces in L. Denote by L� e

the lattice of subspaces spanned by the other points (L � e is a `deletion' of L).

We observed in x2.1 that the universal property of blow-ups gives then a map

� : VL �! VL�e

compatible with the blow-up maps from the matroid varieties to Pn. In particular,
this map is proper, birational and onto. We use notations as in x2, and append a
0 to denote objects in VL�e: so e.g., H

0
0 is the pull-back of the hyperplane class to

VL�e (and it follows ��(H 0
0) = H0), etc.
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Proposition 3.3. ��(
00) = 
0 + 
e

Proof. It is clear that the class vanishes against `F divisors'; we have to show
Hx � �

�(
0) = 0 if x 6= 0; e, and = 1 otherwise. Now any x 2 L, x 6= 0; e, contains

a maximal x0 2 L�e, x0 6= 0; the reader will then check that ��(Hx) = H 0
x0 . Since

� is birational, and using the projection formula, Hx � �
�(
00) = H 0

x0 � 

0
0 = 0 since

x0 6= 0. By the same token, ��(He) = ��(H0) = H 0
0, from which He � �

�(
00) =

H0 � �
�(
00) = 1. �

Proposition 3.3 `stands behind' the deletion-contraction rule for the character-

istic polynomial (Theorem 7.2.4(i) in [W2]), curiously regardless of e being or not

an isthmus of L (a rank-1 element e of L is an `isthmus' if the rank of L is strictly

larger than the rank of L � e). More precisely:

Corollary 3.4(a). If e is not an isthmus, then p(L; t) = p(L � e; t)� p(L=e; t).

Proof. If e is not an isthmus, then r(L) = r(L� e), and it follows that ��(S(t)) =
S(t)0 by de�nition. By Theorem 2.3 and using the projection formula:

p(L � e; t) = S(t)0 � 
00 = ��(S(t)) � 

0

0 = S(t) � ��(
00)

= S(t) � (
0 + 
e) by the proposition

= p(L; t) + p(L=e; t)

again by Theorem 2.3. �

Corollary 3.4(b). If e is an isthmus, then p(L; t) = (t � 1) p(L � e; t).

Proof. If e is an isthmus, then r(L) = r(L � e) + 1. From this it follows that
��(S(t)) = t S(t)0, so

t p(L � e; t) = t S(t)0 � 
00 = ��(S(t)) � 

0

0

= S(t) � (
0 + 
e) arguing as above

= p(L; t) + p(L=e; t)

= p(L; t) + p(L � e; t)

since L=e = L � e if e is an isthmus. The statement follows. �

x3.2. Stanley's modular factorization theorem. If L is the product L1�L2

of two lattices, we could argue as above and prove the multiplicativity of the
characteristic polynomial under direct sums, by studying the map VL �! VL1 .
However, as pointed out in [W2], p. 122, this is a particular case of a more general
factorization result ([S], Theorem 2); so we present the latter.

Recall from x2 that we have an injection i : V[0;x] ,! VL whenever x is a modular

element of L. Again we use notations as in x2, appending a 00 to denote objects

of V[0;x].

Proposition 3.5. If x is modular, and with notations as above:

(1) i�(Hz) = H 00
x^z;

(2) i�(Ez) = E00z if z � x, 0 otherwise;
(3) i�(Fz) = F 00z if z � x, 0 otherwise;

(4) i�(S(t)) = tr(1)�r(x) S(t)00 and i�(S(t)) = tr(1)�r(x)S(t)00
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Proof. (2) and (3) follow from a chase of the diagram of blow-ups producing the

two varieties. For example, if z � x then x and z are separated when blowing-up
along x\z; the proper-transform of Px (that is, V[0;x] by Claim 2.1) is then disjoint

from the exceptional divisor above z, and the corresponding pull-back must vanish.

(1) follows from (2) and (3). The �rst part of (4) follows from the de�nitions

of S(t), S(t)00 and from (1) and (2). The second part of (4) follows from the �rst,
by killing F terms on both sides. �

Corollary 3.6. For all modular x 2 L and all y 2 [0; x]X
z2L;z^x=y

p(L=z; t) = tr(1)�r(x) p([y; x]; t)

Proof. Using Theorem 2.3 to write out the second part of (4) from the proposition:

tr(1)�r(x)
X

0�y�x

p([0; x]=y; t)H 00

y = i�(
X
z2L

p(L=z; t)Hz )

=
X
z2L

p(L=z; t)H 00

z^x by (1) above

=
X

0�y�x

 X
z2L;z^x=y

p(L=z; t)

!
H 00
y :

The statement follows by dotting with 
00y and observing [0; x]=y = [y; x]. �

Setting y = 0 in the statement and isolating p(L=0; t) = p(L; t) gives

p(L; t) = tr(1)�r(x) p([0; x]; t) �
X

z2L;z 6=0
z^x=0

p(L=z; t)

Corollary 3.7. (Modular factorization theorem) If x is a modular element of L,
then

p(L; t) = p([0; x]; t)
X

y2L;y^x=0

�(0; y) tr(1)�r(x)�r(y)

Proof. By induction on the rank of L. The statement is clear if the rank of L
equals r(x) (because this forces x = 1). If x is modular in L and z ^ x = 0, then

z_x is modular in [z; 1] = L=z; and r(L=z) < r(L) if z 6= 0, so we may assume the

statement for L=z in this case. Doing so in the formula preceding the statement
of this corollary gives the induction step. �

x3.3. Crapo's beta invariant. Writing down an expression for the canonical
divisor !L of a matroid variety VL is an elementary exercise:

!L = �(n+ 1)H0 +
X

x2L;x6=0

(n� r(x))Ex +
X
y2M

(n � r(y))Fy ;

where n denotes as usual the dimension of VL. On the other hand, an important

invariant of a matroid is its beta invariant

�(L) = (�1)r(1)�1
d

dt
p(L; 1)
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(our source is x7.3 in [W2]). The beta invariant contains a surprising amount of

information: for example, it vanishes precisely if the matroid is a direct sum (or
it is trivial). Now it turns out that the beta invariant of L is intimately related to

the canonical divisor of VL|thus its relevance is clear from an algebro-geometric

perspective.

Proposition 3.8. Assume L 6= 0. Then

�(L) = (�1)r(1)(1 + !L � 
0)

We will see in a moment (Proposition 3.10) that knowing the canonical divi-

sor of VL (modulo F ) is in fact equivalent to knowing the beta invariant of all
contractions of L.

Proof. p(L; t) = S(t) � 
0 (Theorem 2.3), so

(1 + !L � 
0)� (�1)r(1)�(L) = 1 +

�
!L +

dS

dt
(1)

�
� 
0

= 1 +

 
�(n+ 1)H0 +

X
x6=0

(n � r(x))Ex + r(1)H0 �
X
x6=0

(r(1) � r(x))Ex

!
� 
0

= 1�

 
H0 + (n� r(1))

 
H0 �

X
x6=0

Ex

!!
� 
0

= 1� (H0 + (n� r(1))H1) � 
0 (modulo F )

= 0

as needed. �

Notice that the canonical divisor depends on the dimension n of VL; as the
proposition shows, its intersection with 
0 does not (if L 6= 0). The reason is that
each variety is embedded in the next as a divisor of class H1: so their canonical

divisors di�er by multiples ofH1 by adjunction, and their di�erence is not detected
by 
0 by de�nition of the latter.

The excluded case (L 6= 0) and the shape of the formula in Proposition 3.8
re
ect a little white noise in the de�nitions. We can improve the situation by

modifying the de�nition slightly in order to make it independent of n and fully
compatible with contractions. To this e�ect, de�ne the `beta divisor' of VL to be

e!L = H0 + (dimVL � r(L))H1 + !L

The beta divisor is more natural with respect to the construction, in the sense that

it is compatible with the operations we have encountered so far. More precisely,

let � : VL �! VL�e and i : V[0;x] ,! VL be as in xx3.1,2 (with the same 0, 00

notations), and view VL=x as a subvariety of VL as usual (x2.1); then

Proposition 3.9. For e 2 L; r(e) = 1 and x 2 L:

(1) e!LjVL=x = e!L=x
(2) ��(e!L) = e!L�e � (r(L) � r(L � e))H 0

1

(3) if x is modular, i�(e!L) = e![0;x] � (r(1) � r(x))H 0 0
1
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Proof. These are all immediate from the de�nition and the adjunction formula.

For example, let's check (3): V[0;x] is embedded in VL as the proper transform of
a space intersecting 1 2 L precisely along x; it follows that V[0;x] is cut out by

dimVL � dimV[0;x] representatives of Hx. Its normal bundle has then �rst Chern

class = (dimVL�dimV[0;x])Hx, so the adjunction formula and Proposition 3.5(1)

give

i�(!L) = ![0;x] � i�((dimVL � dimV[0;x])Hx) = ![0;x] � (dimVL � dimV[0;x])H
00

x

Plugging this into the de�nition of the beta divisor gives (3). �

These compatibility properties of the beta divisor are in our view the motor

behind the basic properties of the beta invariant (e.g., 7.3.1, 7.3.2 in [W2]). To
support this viewpoint, we derive a few of these in the remaining of this section.
For a start, let's observe explicitly that knowing the beta divisor (modulo F ) is
equivalent to knowing the beta invariant of L and of all its contractions. Indeed:

Proposition 3.10. For all x 2 L:

e!L � 
x = (�1)r(1)�r(x)�(L=x)

Proof. For x = 0 this follows at once from Proposition 3.8, or by explicit computa-
tion if L = 0; the general case reduces to x = 0 by compatibility with contractions
(Proposition 3.9(1)). �

(�1)r(1)�r(x)�(L=x) is called the `signed beta function', B(x), in [W2], x7.3.
Proposition 3.10 simply says

e!L =
X
x2L

B(x)Hx modulo F .

Corollary 3.11.
X

x2L;x�y

B(x) = r(y) � r(1)

Proof. Reduce to y = 0 by replacing L by L=y. Then by the last proposition

X
x2L

B(x) = e!L �X
x2L


x

= e!L � ` by Proposition 3.1

= 1+ (n � r(1)) � (n + 1) = �r(1)

by the de�nition of e!L. �

The above formula corrects an oversight in [W2], p. 126 (the �rst formula on

p. 126 holds only if x 6= 1, so inversion hides one term in the second).

The compatibility of the beta divisor with deletions (that is, Proposition 3.9(2))

leads to the additivity property of the beta invariant:
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Corollary 3.12. If e is not an isthmus, then �(L) = �(L � e) + �(L=e)

Remark. Loops do not appear in this statement because our matroids are loopless

by assumption, cf. the introduction.

Proof. If e is not an isthmus, then r(L) = r(L � e) so ��(e!L) = e!L�e by Propo-

sition 3.9(2). Using Propositions 3.3 and 3.10:

(�1)r(L�e)�(L � e) = 
00 � e!L�e
= (
0 + 
e) � e!L by the projection formula

= (�1)r(L)�(L) + (�1)r(L=e)�(L=e) :

Since r(L � e) = r(L) = r(L=e) + 1, the statement follows. �

If e is an isthmus, an extra �H 0
1 term appears in ��(e!L); if L 6= [0; e], the

argument in this proof gives �(L � e) = ��(L) + �(L=e) (since in this case
r(L� e) = r(L=e) = r(L)� 1); and since L� e = L=e if e is an isthmus, it follows
that �(L) = 0 in this case. If L = [0; e] itself is an isthmus, then e = 1 and the
extra H 0

1 term kicks in, giving �([0; e]) = 1 as it should (cf. [W2], 7.3.1(b)).
The vanishing of the beta invariant in the presence of an isthmus is a particular

case of the fact that the invariant vanishes on direct sums. This will follow in a
moment from Corollary 3.14 below; it could also be checked easily by studying the
deletion map VL1�L2 �! VL1 . We leave this as a pleasant exercise to the reader
(although the conventional proof, which simply takes the derivative of a product,
is much easier!)

Proposition 3.9(3) translates into:

Corollary 3.13. If x 2 L is modular, and y < x, then

(�1)r(x)�r(y)�([y; x]) =
X

z^x=y

B(z)

Proof. Writing e! modulo F and using (3) from Proposition 3.9 yields

i�(
X
z2L

B(z)Hz ) =
X

0�y�x

B(y)00H 00

y � (r(1) � r(x))H 00

x :

But Proposition 3.5 says

i�(
X
z2L

B(z)Hz ) =
X
z2L

B(z)H 00

z^x

=
X

0�y�x

 X
z^x=y

B(z)

!
H 00

y ;

comparing the two expressions and dotting with 
00y for y < x gives the state-
ment. �

Setting y = 0 in this corollary and isolating the term B(0) gives:

(*) (�1)r(1)�(L) = (�1)r(x)�([0; x])�
X

z 6=0;z^x=0

B(z)

if x 6= 0 is modular. The following statement follows:
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Corollary 3.14. If x 2 L; x 6= 0 is modular, then

�(L) = (�1)r(1)�r(x)�([0; x])
X

y^x=0

�(0; y)

Proof. Induction: if r(L) = r(x) then x = 1 and there is nothing to prove; next,

the terms in the summation in (*) are (up to sign) beta invariants of lattices of
lower rank, so we may apply the statement to them (because z _ x is modular in

[z; 1] and [z; z _ x] �= [0; x] if z ^ x = 0); doing so yields the induction step. �

The statement of the last corollary is a `modular decomposition' expression
for the beta invariant. It could also be derived easily from Stanley's modular

factorization theorem; the above proof, however, seems more direct. For x = e a

rank-1 element of L (thus automatically modular), the corollary says

�(L) = (�1)r(L)�1
X
y�e

�(0; y) ;

that is 7.3.1(d) in [W2]. For x = (1; 0) in L1 � L2, Corollary 3.14 implies the
vanishing of the beta invariant on direct sums: indeed in this case y ^ x = 0 ()

y 2 f0g � L2, so
P

y^x=0 �(0; y) = 0 if L2 6= 0.

One last observation: the last formula can also be written

B(0) �
X
y�e

�(0; y) = 0 ;

which translates back into (e!L +
P

y�eEy) � 
0 = 0 by Proposition 3.10 and

Lemma 2.2, or in fact into

(e!L +
X
y�e

Ey) � 
z = 0 if z � e

(once more by compatibility with contractions). In other words, writing

e!L +
X
y�e

Ey =
X
z2L

azHz

modulo F , we �nd az = 0 necessarily for all z � e. This also has a pretty geometric

explanation. By induction and compatibility with contractions, it is enough to

show
P

z�e az = 0. Now consider the hypersurfaceD obtained by taking the union

of a general representative of H0 and of all Ey with y � e. D is non-singular along

H0 and Ee away from certain divisors of these latter; the complements eH0, eEe of
these divisors in H0, Ee are isomorphic to the complement of sets of codimension
at least 2 in Pn�1: so their Pic is Z, generated by a hyperplane class h, and their
canonical divisor is �nh. Now

!L +H0 +
X
y�e

Ey = !L +D
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restricts, by adjunction, to the canonical divisors of eH0, eEe on each of these: so

restricting e!L +
P

y�eEy = !L + D + (n � r(1))H1 to eH0; eEe and reading the

coe�cient of h gives respectively

X
z�0

az = �n+ (n � r(1)) = �r(1) ;

X
z�e

az = �n+ (n � r(1)) = �r(1)

(H0 meets all Hz , while Ee only meets the Hz with z � e). Comparing the two

expressions gives
P

z�e az = 0, as needed.

x4. Degrees of matroid varieties; Segre classes

The line bundles associated with the divisors

S(m) =mr(1)H0 �
X

x2L;x6=0

mr(1)�r(x)Ex

introduced in x2 on the n-dimensional matroid variety V n = VL de�ne for m > 0
rational maps

�m;n : V n
9 9 KPN(m;n)

to a projective space. We will write �m for short (disregarding n) because these
maps are compatible with the natural inclusions V n � V n+1 � � � � discussed in
x2.1 (since the S(m) are).

Example. For m = 1 we have S(1) = H1 modulo F , and it follows that �1 is the
blow-up map V n �! Pn followed by the projection with center 1 2 L.

Now de�ne for m > 0; n > r(L):

d(m;n) = (deg �m) (deg �m(V n))

So d(m;n) = 0 if dim�m(V
n) < n, while d(m;n) is just the degree of �m(V n) if

�m is generically injective; for example d(1; n) = 0 for all n.

At this stage we do not know a general formula for d(m;n). In a sense that is
not surprising because, as we will show in a moment, the characteristic polynomial
of the original matroid can be recovered from a fraction of the information carried
by the d(m;n)'s. More precisely, let fagn denote the smallest nonnegative residue

of a modulo n; then Theorem 4.4 will imply:
Let d(m;n) be the numbers de�ned above for the cycle matroid of a simple graph

G; and let c be the number of components of G. Then the value of the chromatic

polynomial of G at m > 0 equals

mc
fd(m;n)gn ;

where n is an arbitrary su�ciently large prime.

Also, observe that the V n's are birational to Pn (via the blow-up map), so

that �m and the d(m;n) could be de�ned starting from the original Pn in which
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L is embedded, thus bypassing the blow-up construction. The right language to

express this is that of Segre classes: we will show that the d(m;n) are determined
by the Segre classes of speci�c subschemes of Pn supported on 1 2 L. Advances in

the theory of Segre classes could thus be relevant to problems of graph coloring!

In this section we say for short that a matroid is `nice' if it belongs to the class

de�ned in Proposition 2.5: that is, if all its geometric contractions have charac-

teristic polynomials with nonnegative value at positive integers. In particular, for

nice matroids the divisor

S(m) =
X
x2L

p(L=x;m)Hx

introduced in x2 is generated by global sections for all m > 0. Thus graphical
matroids, for example, are nice in this sense.

Lemma 4.1. For nice matroids

(1) the �m's are in fact regular maps;

(2) the pull-back of the hyperplane class via �m is S(m).

Proof. S(m) = S(m) modulo F : thus the rational maps de�ned by S(m) and
S(m) agree on a non-empty open subset of V n (the complement of the F divisors),

hence they are the same. Now S(m) is globally generated for nice matroids and

m > 0, so the map is regular and S(m) is the hyperplane section. �

(2) implies:

Corollary 4.2. For nice matroids: d(m;n) = S(m)n (the n-th self-intersection

of S(m) in V n).

Now computing S(m)n is a challenge. The following trivial observation is our
only tool:

Lemma 4.3. Hn
0 = 1; Hn

x = 0 for x 6= 0.

Proof. H0 is the pull-back of the hyperplane from Pn via the blow-up maps, so
the �rst formula follows from the projection formula. The second follows from
the remark following Proposition 2.4: the intersection of n+1� r(x) � n general

representatives of Hx is empty. �

Still, this is enough to obtain the result mentioned in the introduction:

Theorem 4.4. If L is the lattice corresponding to a nice matroid (e.g., a graphical

matroid) and n � r(L) is a prime number, then

p(L;m) � d(m;n) (mod n)

In particular, let fagn denote the smallest nonnegative residue of a modulo n.

Then:



A BLOW-UP CONSTRUCTION AND GRAPH COLORING 21

Corollary 4.5. If L corresponds to a nice matroid,

p(L;m) = fd(m;n)gn for all primes n� 0

For graphs, the corollary implies the statement in italics given earlier in this

section, by the relation between the chromatic polynomial of a graph and the
characteristic polynomial of its cycle matroid.

Proof of the Theorem. From Corollary 4.2 and Theorem 2.3

d(m;n) = S(m)n = (
X
x2L

p(L=x;m)Hx)
n

�
X
x2L

(p(L=x;m)Hx)
n (mod n) since n is prime

� p(L;m)n (mod n) by Lemma 4.3

� p(L;m) (mod n) by Fermat's little theorem. �

The d(m;n) can alternatively be obtained in terms of the Segre classes of sub-
schemes of Pn supported on 1 2 L, whose de�nition can be given without reference
to the rest of the construction. For eachm > 0, consider the subschemeX(m;n) of

Pn de�ned by the intersection of all degree-mr(1) hypersurfaces satisfying the mul-
tiplicity prescription mentioned in the end of x1|in short, multiplicitymr(1)�r(x)

along x for all x 6= 0 in L (such hypersurfaces do exist for nice matroids: map

the general representative of S(m) down to Pn; and their intersection is clearly
supported on the maximal subspace 1 2 L). Next, let s0(m;n) be the degree of the
zero-dimensional component of the Segre class s(X(m;n);Pn) (see [F], Chapter 4,
for the notion and properties of Segre classes). The result is then

Theorem 4.6. If L is the lattice corresponding to a nice matroid (e.g., a graphical
matroid) and n � r(L) is a prime number, then

p(L;m) �mr(L)
� s0(m;n) (mod n)

Thus, the characteristic polynomial can be recovered in terms of these numbers

as well. Also, we note explicitly that the statement of the four-color-theorem
translates into:

for a planar graph G, there exists a prime n such that s0(4; n) 6� 4r (mod n),

where r is the number of edges in a spanning forest of G.

Theorem 4.6 follows from the following relation between the d(m;n) and the
above Segre classes:

Lemma 4.7. For m > 0 and n > r(1):

d(m;n) =
�
mr(1)

�n
�

Z
X(m;n)

(1 +mr(1)H)n \ s(X(m;n);Pn)

where H is the hyperplane class in Pn, and
R

denotes degree in the sense of

[F], x1.4.
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Proof. The linear system de�ned by the hypersurfaces of Pn satisfying the multi-

plicity prescription de�nes a rational map Pn 9 9 KPN(m;n). Now we claim that this
map, composed with the blow-up sequence de�ning V n, gives the map �m de�ned

at the beginning of this section: this follows from Lemma 4.1, since the proper

transform of the hypersurfaces has class S(m) in V n. Then applying Proposition

4.4 in [F] gives the statement. �

To prove Theorem 4.6, just read the Lemma modulo n and apply Theorem 4.4.

Here is a table of s0(m;n) for the complete graph on three vertices:

s0(m;n) m = 2 3 4 5

n = 3 10 58 160 334

4 30 213 726 1821

5 74 692 3020 9308

6 166 2143 12226 46795

7 354 6510 49080 234282

We believe the s0(m;n) might in general be easier to control than the d(m;n).
To conclude, we mention that yet another congruence result similar to Theo-

rems 4.4, 4.6 can be stated in terms of Fulton's canonical classes (4.2.6(a) in [F]).
For this, denote by XH(m;n) the general hyperplane section of X(m;n), and by
c0(m;n) the degree of c0(X(m;n)) � c0(XH (m;n)) (notations as in [F], Example
4.2.6); then one can show

c0(m;n) � s0(m;n) (mod n)

for n prime. Unfortunately, few properties of Fulton's canonical classes are known
as yet.

References

[A-H] K. I. Appel, W. Haken, Every Planar Map is Four Colorable I, (with J. Koch) Illinois J.

Math. 21 (1977), 429{490; II, 491{567.

[C] H. H. Crapo, The Tutte Polynomial, Aequationes Math. 3 (1969), 211{29.

[C-M] C. Ciliberto, R. Miranda, Graph Curves, Colorings, and Matroids, Zero-Dimensional

Schemes, Walter de Gruyter, 1994, pp. 89{111.

[C-R] H. H. Crapo, G.-C. Rota, On the Foundations of Combinatorial Theory: Combinatorial

Geometries, The M.I.T. Press, 1970.

[F] W. Fulton, Intersection Theory, Springer Verlag, 1984.

[K-S] S. Katz, S. Str�mme, Schubert: a maple package for intersection theory, Available by

anonymous ftp from ftp.math.okstate.edu, cd pub/schubert.

[M] R. Miranda, Colorings of planar maps and residues of 1-forms, Lecture Notes in Pure

and Applies Mathematics, vol. 140, 1993, pp. 237{248.

[S] R. P. Stanley, Modular elements of geometric lattices, Alg. Universalis 1 (1971), 214{7.

[W1] N. White, ed., Theory of Matroids, Cambridge University Press, 1986.

[W2] N. White, ed., Combinatorial Geometries, Cambridge University Press, 1987.

Tallahassee, FL 32306


