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Abstract

This is the third in a series of our study of Rayleigh-Bénard convection at large

Prandtl number. Here we investigate whether stationary statistical properties of

the Boussinesq system for Rayleigh-Bénard convection at large Prandtl number

are related to those of the infinite Prandtl number model for convection that is

formally derived from the Boussinesq system via setting the Prandtl number to

infinity. We study asymptotic behavior of stationary statistical solutions, or in-

variant measures, to the Boussinesq system for Rayleigh-Bénard convection at

large Prandtl number. In particular, we show that the invariant measures of the

Boussinesq system for Rayleigh-Bénard convection converge to those of the in-

finite Prandtl number model for convection as the Prandtl number approaches

infinity. We also show that the Nusselt number for the Boussinesq system (a

specific statistical property of the system) is asymptotically bounded by the Nus-

selt number of the infinite Prandtl number model for convection at large Prandtl

number. We discover that the Nusselt numbers are saturated by ergodic invariant

measures. Moreover, we derive a new upper bound on the Nusselt number for

the Boussinesq system at large Prandtl number of the form

Ra1/3(ln Ra)1/3 + c
Ra7/2 ln Ra

Pr2
,

which asymptotically agrees with the (optimal) upper bound on Nusselt number

for the infinite Prandtl number model for convection.

c© 2007 Wiley Periodicals, Inc.

1 Introduction

We continue our investigation into the asymptotic behavior of solutions at large

Prandtl number of the following Boussinesq system for Rayleigh-Bénard convec-

tion (nondimensional):

1

Pr

(

∂u

∂t
+ (u · ∇)u

)

+ ∇ p = 1u + Ra kθ, ∇ · u = 0,(1.1)

∂θ

∂t
+ u · ∇θ − u3 = 1θ,(1.2)

u|z=0,1 = 0,(1.3)
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θ |z=0,1 = 0,(1.4)

u|t=0 = u0, θ |t=0 = θ0,(1.5)

where u is the fluid velocity field, p is the modified pressure, θ is the deviation of

the temperature field from the pure conduction state 1 − z, k is the unit upward

vector, Ra is the Rayleigh number, Pr is the Prandtl number, and the fluids occupy

the (nondimensionalized) region

(1.6) � = [0, L x ] × [0, L y] × [0, 1]

with periodicity in the horizontal directions assumed for simplicity.

At very large Prandtl number, we may formally set the Prandtl number to infin-

ity and arrive at the following infinite Prandtl number model (nondimensional):

∇ p0 = 1u0 + Ra kθ0, ∇ · u0 = 0,(1.7)

∂θ0

∂t
+ u0 · ∇θ0 − u0

3 = 1θ0,(1.8)

u0|z=0,1 = 0,(1.9)

θ0|z=0,1 = 0,(1.10)

which is relevant for fluids such as silicone oil and the earth’s mantle as well as

many gases under high pressure [3, 4, 19]. One observes that the Navier-Stokes

equations in the Boussinesq system have been replaced by the Stokes equations in

the infinite Prandtl number model.

The fact that the velocity field is linearly slaved by the temperature field has

been exploited in several recent, very interesting works on rigorous estimates on

the rate of heat convection in this infinite Prandtl number setting (see [9, 11, 14, 16]

and the references therein, as well as the work of [4, 22]).

An important natural question is whether such an approximation is valid.

In our previous works [37, 40], we have shown that the infinite Prandtl number

model is a reasonable model for convection at large Prandtl number in the sense

that suitable weak solutions to the Boussinesq system converge to those of the

infinite Prandtl number model on any fixed finite time interval [37], and the global

attractors of the Boussinesq system converge to that of the infinite Prandtl number

model [40] as the Prandtl number approaches infinity.

It is well-known that for complex systems such as the Boussinesq system where

turbulent/chaotic behavior abound (see, for instance, [3, 7, 19, 23, 32]), the statis-

tical properties for such systems are much more important and physically relevant

than single trajectories [18, 28, 29]. In particular, if a complex system reaches a

statistical equilibrium state, it is the stationary statistical properties characterized

by the invariant measures that are important [18, 28, 35]. Hence it is natural and

essential to ask whether the stationary statistical properties (in terms of invariant

measures) remain close.
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Recall that the invariant measures are supported on the global attractors. There-

fore, the upper semicontinuity of the global attractors that we derived earlier [38,

40] indicates that the statistical properties of the Boussinesq system may be close

to that of the infinite Prandtl number model even for this singular perturbation

problem.

The main purpose of this manuscript is to show that general stationary statistical

properties (in terms of invariant measures) of the Boussinesq system are close to

general stationary statistical properties (invariant measures) of the infinite Prandtl

number model at large Prandtl number. Specific statistical properties such as time-

averaged heat transport in the vertical direction characterized by the long-time-

averaged Nusselt number are also related in the sense that the Nusselt number for

the Boussinesq system is asymptotically bounded by the Nusselt number of the

infinite Prandtl number model at large Prandtl number. Moreover, we show that

the Nusselt numbers are saturated by ergodic invariant measures. We also derive

an upper bound on the Nusselt number for the Boussinesq system of the form

Ra1/3(ln Ra)1/3 + c
Ra7/2 ln Ra

Pr2

at large Prandtl number. This bound asymptotically agrees with the best known

(and physically relevant) bound for the infinite Prandtl number model (c Ra1/3

modulo a logarithmic term [9, 16, 30]); see also [20, 21]. These results further

justify the infinite Prandtl number model for convection as an approximate model

for convection at large Prandtl number.

Throughout this manuscript, we assume the physically important case of high

Rayleigh number

(1.11) Ra ≥ 1

so that we may have nontrivial dynamics.

We also follow the mathematical tradition of denoting our small parameter as ε,

i.e.,

(1.12) ε =
1

Pr
.

For convenience, we recall from [40] the following a priori estimates for solu-

tions on the union of all global attractors (
⋃

ε≤ε0
Aε where Aε is the global attractor

at Pr = 1/ε) for the Boussinesq system at large Prandtl number:
∣

∣

∣

∣

∂

∂t
u

∣

∣

∣

∣

L2

≤ c Ra9/4,(1.13)

1

t

∫ t0+t

t0

∣

∣

∣

∣

∇
∂

∂t
u(s)

∣

∣

∣

∣

2

L2

ds ≤ c Ra
9
2 ,(1.14)

|u(t)|H1 ≤ c Ra,(1.15)
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|u(t)|H2 ≤ cRa5/2,(1.16)

1

t

∫ t0+t

t0

|u(s)|2
H2 ds ≤ cRa2,(1.17)

|θ(t)|H2 ≤ cRa8,(1.18)

∣

∣

∣

∣

∂θ

∂t
(t)

∣

∣

∣

∣

L2

≤ cRa8,(1.19)

as long as

(1.20) ε Ra =
Ra

Pr
≤ c0,

where c0 is an absolute constant.

The rest of the manuscript is organized as follows: In Section 2 we introduce

the definition of stationary statistical solutions (invariant measures) to the Boussi-

nesq and infinite Prandtl number system. We prove that invariant measures for the

Boussinesq system must contain subsequences that converge to invariant measures

of the infinite Prandtl number model as the Prandtl number approaches infinity.

In Section 3 we show that the Nusselt numbers for the Boussinesq system are

asymptotically bounded by that of the infinite Prandtl number model. In Section 4

we derive a new upper bound on the Nusselt number for the Boussinesq system

at large Prandtl number which agrees with the (optimal) upper bound on Nusselt

number for the infinite Prandtl number model for convection. In Section 5 we offer

concluding remarks.

2 Upper Semicontinuity of Invariant Measures

For convenience, we recall the following function spaces that are standard for

the mathematical treatment of Boussinesq equations:

We denote the phase space of the Boussinesq system as

(2.1) X = H × L2

where H is the divergence-free subspace of (L2)3 with zero normal component

in the vertical direction and periodic in the horizontal directions [40]. The phase

space for the infinite Prandtl number model is simply L2.

We also denote

(2.2) Y = V × H 1
0,per

where H 1
0,per is the subspace of H 1 that is zero at z = 0, 1 and periodic in the

horizontal directions, and V is the divergence-free subspace of (H 1
0,per)

3.

Denoting

(2.3) Fε((u, θ)) =

(

−B(u, u) +
1

ε
(−Au + Ra P(kθ)),−u · ∇θ + u3 − 1θ

)
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where B(u, u) = P((u · ∇)u) is the standard bilinear term in the analysis of in-

compressible fluids [10, 15, 18, 27], P represents the Leray-Hopf projection, and

A denotes the Stokes operator with the associated boundary condition; we then

rewrite the Boussinesq system as an abstract (generalized) dynamical system

(2.4)
d

dt
(u, θ) = Fε((u, θ)).

Similarly, denoting

(2.5) F0(θ) = − Ra A−1(kθ) · ∇θ + Ra(A−1(kθ))3 − 1θ,

we can rewrite the infinite Prandtl number model as

(2.6)
d

dt
θ = F0(θ).

We now introduce the concept of stationary invariant measures for the Boussi-

nesq system and the infinite Prandtl number model, which are similar to the case

of the Navier-Stokes system [18, 35].

DEFINITION 2.1 A stationary statistical solution for the Boussinesq system (with

Prandtl number Pr = 1/ε) is a probability measure µε on the phase space X such

that

∫

X

‖(u, θ)‖2
Y dµε((u, θ)) < ∞,(2.7)

∫

X

(

Fε((u, θ)),8′((u, θ))
)

dµε((u, θ)) = 0,(2.8)

for any test functional 8 that is bounded on bounded sets of X and Fréchet-

differentiable for (u, θ) ∈ Y with 8′((u, θ)) ∈ Y , and the derivative is continuous

and bounded as a function from Y to Y .

In addition,

(2.9)

∫

X

{|∇u|2
L2 − Ra θu3}dµε((u, θ)) ≤ 0,

∫

X

{|∇θ |2
L2 − θu3}dµε((u, θ)) ≤ 0.

The set of all stationary statistical solutions for the Boussinesq system at Prandtl

number Pr = 1/ε is denoted IMε.
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DEFINITION 2.2 Likewise, a stationary statistical solution for the infinite Prandtl

number model is a probability measure µ0 on the phase space L2 such that
∫

L2

‖θ‖2

H1
0,per

dµ0(θ) < ∞,(2.10)

∫

L2

(F0(θ),8′
0(θ))dµ0(θ) = 0,(2.11)

for any test functional 80 that is bounded on bounded sets of L2 and Fréchet-

differentiable for θ ∈ H 1
0,per with 8′(θ) ∈ H 1

0,per and whose derivative is continuous

and bounded as a function from H 1
0,per to H 1

0,per. Also,

(2.12)

∫

L2

{|∇θ |2
L2 − Ra(A−1(kθ))3θ}dµ0(θ) ≤ 0.

The set of all stationary statistical solutions for the infinite Prandtl number model

is denoted IM0.

Roughly speaking, conditions (2.7) and (2.10) express the fact that the station-

ary statistical solutions are supported on a smaller and smoother space; conditions

(2.8) and (2.11) are functional weak formulations of the time invariance of sta-

tionary statistical solutions; conditions (2.9) and (2.12) are versions of energy esti-

mates.

It is easy to see that both IMε and IM0 contain more than one element since a

Dirac delta measure concentrated at any steady state solution is an invariant mea-

sure of the underlying (generalized) dynamical system, and we know that both the

Boussinesq system and the infinite Prandtl number model contain multiple steady

states [26, 31].

Recall that the well-posedness of the Boussinesq system is a major unsettled

open problem. Hence stationary statistical solutions may not be invariant measures

just as in the case of the three-dimensional Navier-Stokes system [18]. Neverthe-

less, we have eventual regularity for the Boussinesq system and there exists a global

attractor at large Prandtl number, and the system is well-posed on the global attrac-

tor [39, 40]. Therefore, we may modify the proof for the two-dimensional Navier-

Stokes system [18] and show that stationary statistical solutions to the Boussinesq

system at large Prandtl number are equivalent to invariant measures, i.e., measures

that are invariant under the (generalized) flow. This justifies our notation of IM .

As usual, the support of these invariant measures/stationary statistical solutions

is included in the global attractor just as in the three-dimensional Navier-Stokes

system case [18]. We will provide details elsewhere.

Since the infinite Prandtl number model can be viewed as the (singular) limit

of the Boussinesq system as the Prandtl number approaches infinity, and since the

dynamics is believed to be chaotic [3, 19, 30, 32], we naturally inquire whether the
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statistical properties of the Boussinesq system are related to the statistical proper-

ties of the infinite Prandtl number model. The objects that capture the statistically

stationary properties of the systems are stationary statistical solutions (or invariant

measures) [18, 28]. Therefore we are interested in whether the (stationary) statisti-

cal solutions for the Boussinesq system and the infinite Prandtl number model are

related. Similar issues for the inviscid limit of the Navier-Stokes systems in terms

of time-dependent statistical solutions can be found in [5, 6, 12, 35].

Since the Boussinesq system and the infinite Prandtl number model possess dif-

ferent natural phase spaces, the convergence of invariant measures has to be stud-

ied after we either take the marginal distribution of the invariant measures for the

Boussinesq system onto the perturbative temperature field only or lift the invariant

measures for the infinite Prandtl number model to the product space of velocity

and perturbative temperature.

Our goal here is to show the following result:

THEOREM 2.3 Let µε ∈ IMε, 0 < ε ≤ ε0, be stationary statistical solutions

(invariant measures) of the Boussinesq system at Prandtl number Pr = 1/ε. Then

there exists a subsequence that weakly converges to a limit µ∗ as ε → 0. Moreover,

there exists an invariant measure µ0 of the infinite Prandtl number model such that

µ∗ = Lµ0 where Lµ0 is the natural lift of µ0 and is defined through the relation

(2.13)

∫

X

8(u, θ)d(Lµ0)((u, θ)) =

∫

L2

8(Ra A−1(kθ), θ)dµ0(θ)

for every suitable test functional 8.

PROOF: We observe that a direct proof of the theorem utilizing the weak for-

mulation of the invariance property ((2.8) and (2.11) in the definitions) is not con-

venient due to the singular nature of the limit. Instead, we first prove the upper

semicontinuity in the projected sense.

There are two main ingredients in this part of the proof: a compactness result

that ensures the existence of a convergent subsequence, and an argument indicating

that the limit must be an invariant measure of the limit system.

Thanks to (1.16) and (1.17), there exists a constant R2 > 0 such that supp{µε} ⊂

BR2
((H 2)3 × H 2), 0 < ε ≤ ε0; i.e., the support of all these invariant measures is

included in a ball of radius R2 in (H 2)3 × H 2 (independent of ε) since invari-

ant measures are supported on the global attractor [18]. Since this bounded ball

in (H 2)3 × H 2 is compactly imbedded in the phase space X by Sobolev imbed-

ding, we have, thanks to Prokhorov’s compactness theorem [2, 24], that the set

{µε, 0 < ε ≤ ε0} is weakly precompact in the space PM(X) of all probability

measures on the phase space X .
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Next, we plan to show that appropriate marginal distributions of {µε, 0 < ε ≤

ε0} converge weakly to an invariant measure µ0 of the infinite Prandtl number

model.

For this purpose, we make a change of variable for the Boussinesq system and

introduce the new variable

(2.14) v = u − Ra A−1(kθ),

which measures the deviation of the velocity component of the Boussinesq system

from that of the infinite Prandtl number model.

We then have a new set of measures µ̃ε on the (v, θ) space defined as

(2.15)

∫

8(u, θ)dµε((u, θ)) =

∫

8(v + Ra A−1(kθ), θ)dµ̃ε((v, θ))

for all appropriate test functionals 8.

The precompactness of the set {µε, 0 < ε ≤ ε0} implies the precompactness

of the set {µ̃ε, 0 < ε ≤ ε0}. Hence, the marginal distribution of µ̃ε in θ , denoted

Mµ̃ε and defined by

(2.16)

∫

80(θ)d Mµ̃ε(θ) =

∫

80(θ)dµ̃ε((v, θ)) =

∫

80(θ)dµε((u, θ)),

is also precompact in the space PM(L2) of all probability measures on L2.

Therefore, without loss of generality we may assume

(2.17) Mµ̃ε ⇀ µ0

in PM(L2).

Our goal now is to show that µ0 must be a member of IM0, the set of stationary

statistical solutions (invariant measures) for the infinite Prandtl number model.

We need to verify the three conditions in the definition of IM0, (2.10), (2.11),

and (2.12).

It is easy to see that the first condition is satisfied thanks to the uniform a priori

estimates (1.16) and (1.17).

It is also easy to see that for any point (u, θ) ∈ Aε and the associated trajectory

passing through this given point, we have

(2.18) Av = −ε

(

∂u

∂t
+ B(u, u)

)

.

Hence, thanks to the uniform a priori estimates (1.13) and (1.16), the regularity of

the Stokes operator, and Sobolev inequalities

|v|H2 ≤ c2ε

(
∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

L2

+ |u|H2 |∇u|L2

)

≤ c3ε.(2.19)
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Therefore,

∫

L2

{|∇θ |2
L2 − Ra(A−1(kθ))3θ}dµ0(θ)

= lim
ε→0

∫

L2

{|∇θ |2
L2 − Ra(A−1(kθ))3θ}d Mµ̃ε(θ)

= lim
ε→0

∫

X

{|∇θ |2
L2 − Ra(A−1(kθ))3θ}dµε((u, θ))

≤ lim sup
ε→0

∫

X

{|∇θ |2
L2 − u3θ}dµε((u, θ))

+ lim sup
ε→0

∫

X

{(u3 − Ra(A−1(kθ))3)θ}dµε((u, θ))

≤ lim sup
ε→0

∫

X

|v|L2 |θ |L2 dµε((u, θ))

= 0,(2.20)

where we have utilized the weak convergence of Mµ̃ε, the definition of marginal

distribution with 80(θ) = |∇θ |2
L2 − Ra(A−1(kθ))3θ , the assumption that µε is an

invariant measure for the Boussinesq system, and the uniform estimates on v.

Hence we have verified (2.9) and (2.12).

As for the second condition, we take special test functionals

(2.21) 8((u, θ)) = 80(θ)

for some test functional 80 for the infinite Prandtl number model.

We then have

∣

∣

∣

∣

∫

L2

(F0(θ),8′
0(θ))dµ0(θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
ε→0

∫

L2

(F0(θ),8′
0(θ))d(Mµ̃ε)(θ)

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
ε→0

∫

X

(F0(θ),8′
0(θ))dµε((u, θ))

∣

∣

∣

∣
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≤

∣

∣

∣

∣

lim sup
ε→0

∫

X

(−u · ∇θ + u3 − 1θ,8′
0(θ))dµε((u, θ))

∣

∣

∣

∣

+

∣

∣

∣

∣

lim sup
ε→0

∫

X

(Ra(A−1(kθ))3 − u3,8
′
0(θ))dµε((u, θ))

∣

∣

∣

∣

+

∣

∣

∣

∣

lim sup
ε→0

∫

X

(

−(u − Ra A−1(kθ)) · ∇θ,8′
0(θ)

)

dµε((u, θ))

∣

∣

∣

∣

≤ lim
ε→0

∫

X

|v|L2‖8′
0(θ)‖L2 dµε((u, θ))

+ lim
ε→0

∫

X

|v|L∞ |∇θ |L2‖8′
0(θ)‖L2 dµε((u, θ))

= 0.(2.22)

This verifies condition (2.11) and thus completes the proof of the upper semiconti-

nuity in the projected sense.

Next, we show the upper semicontinuity in the lifted sense, i.e, µε ⇀ Lµ0 =

µ∗.

It is easy to check that Lµ0 ∈ PM(X) and that the marginal distribution of

Lµ0 ∈ PM(X) defined above (through v) is µ0.

Now fix a test functional 8 that is bounded on bounded set of X , Fréchet-

differentiable for (u, θ) ∈ Y with 8′((u, θ)) ∈ Y , and whose derivative is continu-

ous and bounded as a function from Y to Y ; we have
∣

∣

∣

∣

∫

X

8(u, θ)dµε((u, θ)) −

∫

X

8(u, θ)d(Lµ0)((u, θ))

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

X

8(u, θ)dµε((u, θ)) −

∫

L2

8(Ra A−1(kθ), θ)dµ0(θ)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

X

8(Ra A−1(kθ), θ)dµε((u, θ)) −

∫

L2

8(Ra A−1(kθ), θ)dµ0(θ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

X

(8(Ra A−1(kθ), θ) − 8(u, θ))dµε((u, θ))

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

L2

8(Ra A−1(kθ), θ)d(Mµ̃ε)(θ) −

∫

L2

8(Ra A−1(kθ), θ)dµ0(θ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

X

(8(Ra A−1(kθ), θ) − 8(u, θ))dµε((u, θ))

∣

∣

∣

∣
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≤

∣

∣

∣

∣

∫

L2

8(Ra A−1(kθ), θ)d(Mµ̃ε)(θ) −

∫

L2

8(Ra A−1(kθ), θ)dµ0(θ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

X

sup
(u,θ)∈supp(µε)

‖8′(u, θ)‖Y |v|H1 dµε((u, θ))

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

L2

8(Ra A−1(kθ), θ)d(Mµ̃ε)(θ) −

∫

L2

8(Ra A−1(kθ), θ)dµ0(θ)

∣

∣

∣

∣

+ cε sup
(u,θ)∈supp(µε)

‖8′(u, θ)‖Y

→ 0 as ε → 0,(2.23)

where we have used the weak convergence of the marginal distribution proved in

the first half, the mean value property, the boundedness of the Fréchet derivative of

8, and the a priori estimates on v.

This completes the proof of the theorem. �

What we have shown here is the upper semicontinuity of the set of invariant

measures in this singular limit setting. This is reminiscent of the upper semicon-

tinuity of the global attractors [40] for the same problem as well as well-known

results on upper semicontinuity of global attractors for regular perturbations of

dissipative dynamical systems [33]. We do not expect continuity in general since,

for instance, the set of equilibrium states for an ODE can be a discontinuous func-

tion of a parameter, and each delta function on the phase space that is supported on

a steady state is an invariant measures [40].

We could also formulate a general theorem on upper semicontinuity of statis-

tical solutions with respect to a certain parameter for two time-scale problems of

relaxation type just as we did for the upper semicontinuity of the global attractors

[40]. However, we refrain from this since it is necessary to write the statistical

analogue of the energy inequality (condition (2.9) and (2.12) in the definitions

of stationary statistical solutions), which depends on the specific structure of the

equation.

3 Upper Semicontinuity of the Nusselt Number

Among all statistical properties of the Boussinesq system for Rayleigh-Bénard

convection, one of the most prominent is the long-time averaged Nusselt number
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measuring the heat transport in the vertical direction,

(Nu)ε = sup
(u0,θ0)∈X

lim sup
t→∞

1

t L x L y

∫ t

0

∫

�

|∇T (x, s)|2 dx ds,

= 1 + sup
(u0,θ0)∈X

lim sup
t→∞

1

t L x L y

∫ t

0

∫

�

u3(x, s)T (x, s)dx ds,

= 1 + sup
(u0,θ0)∈X

lim sup
t→∞

1

t L x L y

∫ t

0

∫

�

u3(x, s)θ(x, s)dx ds,(3.1)

where T = 1− z + θ is the temperature field and (u, θ) are suitable weak solutions

to the Boussinesq system with initial data (u0, θ0).

The Nusselt number for the infinite Prandtl number is defined similarly as

(3.2) (Nu)0 = 1 + sup
θ0∈L2

lim sup
t→∞

1

t L x L y

∫ t

0

∫

�

Ra(A−1(kθ))3(x, s)θ(x, s)dx ds.

A natural question to ask is whether the Nusselt number of the Boussinesq

system is related to the Nusselt number of the infinite Prandtl number model.

The first observation is the following lemma, which states that the Nusselt num-

ber defined above is a statistical property of the system with respect to a certain

ergodic invariant measure:

LEMMA 3.1 There exists at least one ergodic invariant measure νε ∈ IMε for

each ε ∈ [0, ε0] such that

(Nu)ε = 1 +
1

L x L y

∫

X

∫

�

u3θ dx dνε((u, θ))

= 1 + sup
µ∈IMε

1

L x L y

∫

X

∫

�

u3θ dx dµ((u, θ))

= 1 + lim
t→∞

1

t L x L y

∫ t

0

∫

�

u3(x, s)θ(x, s) dx ds(3.3)

∀(u0, θ0) ∈ supp(νε),
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(Nu)0 = 1 +
1

L x L y

∫

L2

∫

�

Ra(A−1(kθ))3θ dx dν0(θ)

= 1 + sup
µ∈IM0

1

L x L y

∫

X

∫

�

Ra(A−1(kθ))3θ dx dµ(θ)

= 1 + lim
t→∞

1

t L x L y

∫ t

0

∫

�

Ra(A−1(kθ))3(x, s)θ(x, s)dx ds(3.4)

∀θ0 ∈ supp(ν0).

PROOF: We show only the case of 0 < ε ≤ ε0.

For each fixed ε ∈ (0, ε0], there exists (u0 j , θ0 j ) ∈ Aε ⊂ X such that

(Nu)ε = 1 + lim
j→∞

lim sup
t→∞

1

t L x L y

∫ t

0

∫

�

u3(x, s)θ(x, s)dx ds

(u(x, 0), θ(x, 0)) = (u0 j , θ0 j ).

(3.5)

For each fixed orbit (corresponding to suitable weak solutions [39, 40]), the long-

time average is a statistical property in the sense that any fixed choice of general-

ized limit of the time average is equivalent to the spatial average with respect to a

suitable stationary statistical solution by an application of the Krylov-Bogoliubov

theory (see [18, 35] for the case of the Navier-Stokes system). In particular, for

the chosen orbit (suitable weak solution), after an application of the Hahn-Banach

theorem, there is a special generalized limit of the time averaging that is consis-

tent with lim sup on the particular functional (u3θ) and particular orbit. Therefore,

there exists µε,(u0 j ,θ0 j ) ∈ IMε (this is an abuse of notation since there might be

many orbits corresponding to the same initial data) such that

(3.6) lim sup
t→∞

1

t L x L y

∫ t

0

∫

�

u3(x, s)θ(x, s)dx ds =

1

L x L y

∫

X

∫

�

u3θ dx dµε,(u0 j ,θ0 j )(u, θ).

We leave the details to the interested reader.

These stationary statistical solutions are weakly compact in PM(X) for each

fixed ε ∈ (0, ε0] due to the uniform a priori estimates (1.16) and (1.17) and

Prokhorov’s theorem [2, 24]. Therefore, without loss of generality we may assume

(3.7) µε,(u0 j ,θ0 j ) ⇀ µε as j → ∞

for some µε ∈ IMε.
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This implies

(Nu)ε = 1 + lim
j→∞

lim sup
t→∞

1

t L x L y

∫ t

0

∫

�

u3(x, s)θ(x, s)dx ds

= 1 + lim
j→∞

1

L x L y

∫

X

∫

�

u3θ dx dµε,(u0 j ,θ0 j )(u, θ)

= 1 +
1

L x L y

∫

X

∫

�

u3θ dx dµε((u, θ)).(3.8)

Now consider the following extremal subset of IMε:

(3.9) SIMε =

{

µ ∈ IMε

∣

∣

∣

∣

∫

X

∫

�

u3θ dx dµ = sup
ν∈IMε

∫

X

∫

�

u3θ dx dν

}

.

The subset SIMε is nonempty by the uniform a priori estimates (1.16) and (1.17)

and Prokhorov’s theorem. Indeed, suppose we have νε, j ∈ IMε such that

(3.10) lim
j→∞

∫

X

∫

�

u3θ dx dνε, j = sup
ν∈IMε

∫

X

∫

�

u3θ dx dν,

(the supremum is finite due to the a priori estimates (1.16) and (1.17)). The set

{νε, j , j ≥ 1} must be weakly precompact in PM(X) thanks to the uniform a priori

estimates (1.16) and (1.17) and Prokhorov’s theorem. Hence it must contain a

subsequence that converges to some νε ∈ PM(X). It is then easy to verify that

νε ∈ SIMε.

Notice that M(X), the space of all finite Borel measures on X , form a locally

convex topological space with the topology generated by weak convergence, and

notice that SIMε is a compact subset of M(X). Therefore, the extremal set1 of

SIMε is nonempty thanks to the Krein-Milman theorem [18, 24]. Let νε be an

extremal point of SIMε. Then νε is necessarily an extremal point of IMε, which

further implies, after repeating the proof of a well-known result for dynamical

systems [36] and utilizing the eventual regularity of the Boussinesq system [39,

40], that νε must be ergodic. Therefore,

(Nu)ε = 1 +
1

L x L y

∫

X

∫

�

u3θ dx dµε(u, θ)

≤ 1 + sup
µ∈IMε

1

L x L y

∫

X

∫

�

u3θ dx dµ((u, θ))

= 1 +
1

L x L y

∫

X

∫

�

u3θ dx dνε(u, θ)

1 An extremal point of a set is a point that cannot be expressed as a proper convex combination of

two other (distinct) points in the set.
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= 1 + lim
t→∞

1

t L x L y

∫ t

0

∫

�

u3(x, s)θ(x, s)dx ds ∀(u0, θ0) ∈ supp(νε)

≤ (Nu)ε.(3.11)

This completes the proof of the lemma. �

Although the lemma establishes that the Nusselt number is a statistical prop-

erty with respect to appropriate ergodic invariant measures, the limit of the Nusselt

number may not be directly related to the Nusselt number of the limit system (in-

finite Prandtl number model) since those invariant measures corresponding to the

Nusselt number are special and their limit may not be invariant measures corre-

sponding to the Nusselt number for the limit system. In other words, the weak

limits of the set SIMε may not be associated with SIM0. Nevertheless, we are

still able to establish the following relationship, which can be interpreted as upper

semicontinuity of the Nusselt number in this singular limit.

THEOREM 3.2

(3.12) lim sup
ε→0

(Nu)ε ≤ (Nu)0.

PROOF: Let νε ∈ IMε, ε ∈ [0, ε0], be ergodic invariant measures correspond-

ing to the Nusselt number that we discussed in Lemma 3.1. Thanks to Theorem 2.3,

we know that the set of {M ν̃ε, 0 < ε ≤ ε0} is weakly precompact in PM(L2).

Without loss of generality, we assume it weakly converges to some µ0 ∈ IM0, i.e.,

M ν̃ε ⇀ µ0. This implies

lim sup
ε→0

(Nu)ε = 1 + lim sup
ε→0

1

L x L y

∫

X

∫

�

u3θ dx dνε(u, θ)

≤ 1 + lim sup
ε→0

1

L x L y

∫

X

∫

�

Ra(A−1(kθ))3θ dx dνε(u, θ)

+ lim sup
ε→0

1

L x L y

∫

X

∫

�

(u3 − Ra(A−1(kθ))3)θ dx dνε(u, θ)

≤ 1 + lim sup
ε→0

1

L x L y

∫

L2

∫

�

Ra(A−1(kθ))3θ dx d M ν̃ε(θ)

+ lim sup
ε→0

1

L x L y

∫

X

|v3|L2 |θ |L2 dνε(u, θ)

= 1 +
1

L x L y

∫

L2

∫

�

Ra(A−1(kθ))3θ dx dµ0(θ)
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≤ 1 +
1

L x L y

∫

L2

∫

�

Ra(A−1(kθ))3θ dx dν0(θ)

= (Nu)0.(3.13)

This ends the proof of the theorem. �

It is worthwhile to recall that we do not expect continuity of statistical prop-

erties on parameters for general dynamical systems. In fact, it is easy to find

ODE counterexamples where we have bifurcation. However, there is hope that at

large Rayleigh number, both the Boussinesq system and the infinite Prandtl num-

ber model possess enough mixing so that the invariant measures that saturate the

Nusselt number, i.e., νε, are unique for each ε ∈ [0, ε0] since we believe the Nus-

selt number will be saturated by turbulent trajectories (the set of invariant measures

itself always contains more than one element for large Rayleigh number due to the

existence of multiple steady states). If this assumption is valid, we then may have

continuity of the Nusselt number. Still we do not have the rate of convergence.

The rate of convergence can be derived if we look at upper bounds on the Nusselt

number instead. This is the goal of the next section.

4 Estimates of the Nusselt Number

The semicontinuity result in the previous section indicates that the Nusselt num-

ber for the limit system (infinite Prandtl number model) is an asymptotic bound for

the Nusselt number associated with the Boussinesq system at large Prandtl num-

ber. However, no explicit convergence rate is given. The goal of this section is to

derive a convergence rate result for the upper bound of the Nusselt numbers asso-

ciated with the Boussinesq and infinite Prandtl number models. More specifically,

we intend to derive an upper bound on the Nusselt number (Nu)ε that is consistent

with the best-known upper bound [1, 9, 16, 30] on the Nusselt number (Nu)0 for

the infinite Prandtl number model.

The approach we take here is to view the Boussinesq system at large Prandtl

number as a perturbation of the infinite Prandtl number model for convection. More

specifically, we write the Boussinesq system as

∇ p = 1u + Ra kT + f, ∇ · u = 0,(4.1)

∂T

∂t
+ u · ∇T = 1T,(4.2)

u|z=0,1 = 0,(4.3)

T |z=0 = 1, T |z=1 = 0,(4.4)
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where

(4.5) f = −ε

(

∂u

∂t
+ (u · ∇)u

)

.

We follow the background temperature profile method for the Boussinesq sys-

tem proposed by Constantin and Doering [8, 9, 16], which is a generalization of

E. Hopf’s original idea [34]. One difference here is we do not enforce the spectral

constraint in choosing our background temperature profile. In fact, we will choose

a background profile that “almost” satisfies the spectral constraint.

Let τ = τ(z) be a background temperature profile that satisfies the boundary

condition for the temperature field T , and let

(4.6) θ = T − τ.

Then the new perturbative temperature field2 θ satisfies the equation

(4.7)
∂θ

∂t
+ u · ∇θ = −u3τ

′ + 1θ + τ ′′.

Therefore, the Nusselt number can be written as

(Nu)ε = sup
(u0,θ0)∈X

〈|∇T |2〉

=

∫ 1

0

(τ ′)2 dz + sup
(u0,θ0)∈X

[〈|∇θ |2〉 − 2〈θτ ′′〉]

=

∫ 1

0

(τ ′)2 dz − inf
(u0,θ0)∈X

〈|∇θ |2 + 2τ ′u3θ〉

=

∫ 1

0

(τ ′)2 dz − inf
(u0,θ0)∈X

〈Q(τ )(θ)〉,(4.8)

where

(4.9) Q(τ )(θ) = |∇θ |2 + 2τ ′u3θ

and 〈·〉 denotes the space-time average defined as

(4.10) 〈g〉 = lim sup
t→∞

1

t L x L y

∫ t

0

∫

�

g(x, s)dx ds.

It is a straightforward calculation, based on the alternative form of the Boussi-

nesq system introduced in this section, that the vertical velocity field u3 and the

2 This perturbative temperature field away from the background temperature field τ is different

from the perturbative temperature field utilized in the previous sections, which is the perturbation

away from the pure conduction state.
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perturbative temperature field θ satisfy the following equation,

12u3 = − Ra 1Hθ − 1H f3 +
∂2 f1

∂x∂z
+

∂2 f2

∂y∂z
,(4.11)

u3

∣

∣

z=0,1
= 0,

∂u3

∂z

∣

∣

∣

∣

z=0,1

= 0, θ
∣

∣

z=0,1
= 0,(4.12)

where 1H = ∂2

∂x2 + ∂2

∂y2 is the horizontal Laplace operator. This relationship implies

that the velocity field is almost slaved to the perturbative temperature field.

In terms of the horizontal Fourier coefficients θ̂m, û3m, and f̂ jm, j = 1, 2, 3,

where m = (m1, m2) is the horizontal Fourier wave number, the relationship be-

tween the vertical velocity and the perturbative temperature can be written as
(

m2 −
d2

dz2

)2

û3m = Ra m2θ̂m + m2 f̂3m + im1

d

dz
f̂1m + im2

d

dz
f̂2m,(4.13)

û3m

∣

∣

z=0,1
= 0,

d

dz
û3m

∣

∣

∣

∣

z=0,1

= 0, θ̂m

∣

∣

z=0,1
= 0,(4.14)

where m2 = m2
1 + m2

2 as usual.

Therefore, we have the following lemma, which is a modification/generalization

of the proposition in [16]:

LEMMA 4.1 The following inequality holds for all m:

(4.15) Re

∫ 1

0

θ̂mû∗
3m

z
dz ≥

1

Ra

∫ 1

0

|û3m|2

z3
dz

−
3

2 Ra

(

| f̂3m|2
L2 +

| f̂1m|L2 | d
dz

f̂1m|L2 + | f̂2m|L2 | d
dz

f̂2m|L2

m2

)

.

PROOF OF LEMMA 4.1: We multiply (4.13) by ζ = û∗
3m/z (here ∗ denotes

complex conjugation), integrate over [0, 1], and take the real part; we deduce

Re

∫ 1

0

θ̂mû∗
3m

z
dz

= Re

∫ 1

0

{

(m4û3m − 2m2û′′
3m

+ û′′′′
3m

)û∗
3m

Ra m2 z
−

f̂3mû∗
3m

Ra z
(4.16)

−
im1 f̂ ′

1m
û∗

3m

m2 Ra z
−

im2 f̂ ′
2m

û∗
3m

m2 Ra z

}

dz

(integration by parts and Cauchy-Schwarz inequality)

≥
m2

Ra

∣

∣

∣

∣

û3m

z1/2

∣

∣

∣

∣

2

L2
−

2

Ra
Re

∫ 1

0

û′′
3m

û∗
3m

z
dz +

1

Ra m2
Re

∫ 1

0

û′′′′
3m

û∗
3m

z
dz

−
1

Ra
| f̂3m|L2 |

û3m

z3/2
|L2 −

1

Ra |m|

(
∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2
+

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

L2

)(
∣

∣

∣

∣

f̂1m

z1/2

∣

∣

∣

∣

L2
+

∣

∣

∣

∣

f̂2m

z1/2

∣

∣

∣

∣

L2

)

(lemma 1 of [16])
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=
m2

Ra
|z1/2ζ |2

L2 +
2

Ra
|z1/2ζ ′|2

L2 +
1

Ra m2
|z1/2ζ ′′|2

L2

−
1

Ra
| f̂3m|L2

∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2
−

1

Ra |m|

(
∣

∣

∣

∣

û3m

z3/2
|L2 + |

û′
3m

z1/2

∣

∣

∣

∣

L2

)(
∣

∣

∣

∣

f̂1m

z1/2

∣

∣

∣

∣

L2
+

∣

∣

∣

∣

f̂2m

z1/2

∣

∣

∣

∣

L2

)

(Cauchy-Schwarz inequality)

≥
2

Ra
|z1/2ζ ′|2

L2 +
2

Ra
|z1/2ζ |L2 |z1/2ζ ′′|L2

−
1

Ra
| f̂3m|L2

∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2
−

1

Ra |m|

(
∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2
+

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

L2

)(
∣

∣

∣

∣

f̂1m

z1/2

∣

∣

∣

∣

L2
+

∣

∣

∣

∣

f̂2m

z1/2

∣

∣

∣

∣

L2

)

(lemma 2 of [16])

≥
2

Ra
|z1/2ζ ′|2

L2 +
2

Ra

∣

∣

∣

∣

ζ

z1/2

∣

∣

∣

∣

2

L2

−
1

Ra
| f̂3m|L2

∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2
−

1

Ra |m|

(
∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2
+

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

L2

)(
∣

∣

∣

∣

f̂1m

z1/2

∣

∣

∣

∣

L2
+

∣

∣

∣

∣

f̂2m

z1/2

∣

∣

∣

∣

L2

)

(Cauchy-Schwarz inequality)

≥
2

Ra

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

2

L2
−

1

Ra
| f̂3m|L2

∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2

−
1

Ra |m|

(
∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2
+

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

L2

)(
∣

∣

∣

∣

f̂1m

z1/2

∣

∣

∣

∣

L2
+

∣

∣

∣

∣

f̂2m

z1/2

∣

∣

∣

∣

L2

)

(Hardy-type inequality and Cauchy-Schwarz inequality )

≥
2

Ra

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

2

L2
−

1

Ra
| f̂3m|L2

∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2

−
2

Ra |m|

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

L2

(

| f̂1m|
1/2

L2

∣

∣

∣

∣

f̂1m

z

∣

∣

∣

∣

1/2

L2
+ | f̂2m|

1/2

L2

∣

∣

∣

∣

f̂2m

z

∣

∣

∣

∣

1/2

L2

)

(Hardy inequality)

≥
2

Ra

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

2

L2
−

1

Ra
| f̂3m|L2

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

L2

−
2

Ra |m|

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

L2

(

| f̂1m|
1/2

L2 | f̂ ′
1m|

1/2

L2 + | f̂2m|
1/2

L2 | f̂ ′
2m|

1/2

L2

)

(Cauchy-Schwarz inequality )

≥
1

Ra

∣

∣

∣

∣

û′
3m

z1/2

∣

∣

∣

∣

2

L2
−

3

2 Ra

(

| f̂3m|2
L2 +

1

|m|2
(| f̂1m|L2 | f̂ ′

1m|L2 + | f̂2m|L2 | f̂ ′
2m|L2 )

)

(Hardy-type inequality )

≥
1

Ra

∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

2

L2
−

3

2 Ra

(

| f̂3m|2
L2 +

1

|m|2
(| f̂1m|L2 | f̂ ′

1m|L2 + | f̂2m|L2 | f̂ ′
2m|L2 )

)

(4.17)

where we have performed integration by parts (there is no singularity in our integra-

tion by parts thanks to the boundary conditions listed in (4.14)), applied following
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lemma 1 of [16]: Assume w(0) = w(1) = w′(0) = w′(1) = 0; we have

− Re

∫ 1

0

w′′w∗

z
dz =

∫ 1

0

z

∣

∣

∣

∣

(

w

z

)′∣
∣

∣

∣

2

dz,

Re

∫ 1

0

w′′′′w∗

z
dz =

∫ 1

0

z

∣

∣

∣

∣

(

w

z

)′′∣
∣

∣

∣

2

dz,

and lemma 2 from [16]: Assume ζ(0) = ζ(1) = 0; we have
∣

∣

∣

∣

ζ

z1/2

∣

∣

∣

∣

2

L2

≤ |z1/2ζ |L2 |z1/2ζ ′′|L2,

as well as a Hardy inequality: Assume g(0) = g(1) = 0; we have
∫ 1

0

g2

z2
≤

∫ 1

0

g′2,

and a Hardy-type inequality: Assume g(0) = g′(0) = 0 = g(1); we have
∫ 1

0

g2

z3
≤

∫ 1

0

g′2

z
,

which can be shown by using the fundamental theorem of calculus and Cauchy-

Schwarz on g2/z2.

This completes the proof of Lemma 4.1. �

Next we borrow an idea from [16] and introduce the following (nonmonotonic)

background flow τ for δ ∈ (0, 1
2
),

(4.18) τ(z) =











1 − z/δ, 0 ≤ z ≤ δ,

1/2 + λ(δ) ln z/(1 − z), δ ≤ z ≤ 1 − δ,

(1 − z)/δ 1 − δ ≤ z ≤ 1,

with

(4.19) λ(δ) =
1

2 ln (1 − δ)/δ
.

Now in terms of the Fourier coefficients, we have

Q(τ )(θ) =
∑

m

(

|θ̂ ′
m|2 + |m|2|θ̂m|2 + τ ′(û3mθ̂∗

m + û∗
3mθ̂m)

)

=
∑

m

(

Q
(τ )

m,lower + Q(τ )
m,upper

)

(4.20)

where

Q
(τ )

m,lower =

∫ 1/2

0

(|θ̂ ′
m|2 + m2|θ̂m|2)dz + 2λ

∫ 1

0

Re[θ̂mû∗
3m]

z
dz(4.21)

− 2

∫ δ

0

(

1

δ
+

λ

z
+

λ

1 − z

)

Re[θ̂mû∗
3m]dz
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Q(τ )
m,upper =

∫ 1

1/2

(|θ̂ ′
m|2 + m2|θ̂m|2)dz + 2λ

∫ 1

0

Re[θ̂mû∗
3m]

1 − z
dz(4.22)

− 2

∫ 1

1−δ

(

1

δ
+

λ

z
+

λ

1 − z

)

Re[θ̂mû∗
3m]dz

where we have rewritten the terms so that the stable stratification of τ(z) in the

bulk may help to asymptotically dominate the negative contributions to Q(τ ) from

the boundary layer.

It is easy to check that

Q
(τ )

m,lower =

∫ 1/2

0

(|θ̂ ′
m|2 + m2|θ̂m|2)dz + 2λ

∫ 1

0

Re[θ̂mû∗
3m]

z
dz

− 2

∫ δ

0

(

1

δ
+

λ

z
+

λ

1 − z

)

Re[θ̂mû∗
3m]dz

(by lemma 2)

≥

∫ 1/2

0

|θ̂ ′
m|2 dz +

2λ

Ra

∫ 1

0

|û3m|2

z3
dz

− 2

∫ δ

0

(

1

δ
+

λ

z
+

λ

1 − z

)

|θ̂m| |û3m|dz

−
3λ

Ra

(

| f̂3m|2
L2 +

| f̂1m|L2 | d
dz

f̂1m|L2 + | f̂2m|L2 | d
dz

f̂2m|L2

m2

)

(by Hölder’s inequality)

≥

∫ 1/2

0

|θ̂ ′
m|2 dz +

2λ

Ra

∫ 1

0

|û3m|2

z3
dz

− 2

( ∫ δ

0

z4

(

1

δ
+

λ

z
+

λ

1 − z

)2

dz

)1/2∣
∣

∣

∣

θ̂m

z1/2

∣

∣

∣

∣

L∞(0,1/2)

∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2

−
3λ

Ra

(

| f̂3m|2
L2 +

| f̂1m|L2 | d
dz

f̂1m|L2 + | f̂2m|L2 | d
dz

f̂2m|L2

m2

)

(by a one-dimensional Sobolev inequality)

≥

∫ 1/2

0

|θ̂ ′
m|2 dz +

2λ

Ra

∫ 1

0

|û3m|2

z3
dz

− 2

( ∫ δ

0

z4

(

1

δ
+

λ

z
+

λ

1 − z

)2

dz

)1/2

|θ̂ ′
m|L2(0,1/2)

∣

∣

∣

∣

û3m

z3/2

∣

∣

∣

∣

L2

−
3λ

Ra

(

| f̂3m|2
L2 +

| f̂1m|L2 | d
dz

f̂1m|L2 + | f̂2m|L2 | d
dz

f̂2m|L2

m2

)

(by Cauchy-Schwarz)
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≥

[

2λ

Ra
−

∫ δ

0

z4

(

1

δ
+

λ

z
+

λ

1 − z

)2

dz

]

×

∫ 1

0

|û3m|2

z3
dz(4.23)

−
3λ

Ra

(

| f̂3m|2
L2 +

| f̂1m|L2 | d
dz

f̂1m|L2 + | f̂2m|L2 | d
dz

f̂2m|L2

m2

)

where we have used Lemma 4.1 and the Cauchy-Schwarz inequality as well as a

one-dimensional Sobolev inequality (calculus inequality): Suppose g(0) = 0; we

then have
∣

∣

∣

∣

g(z)

z1/2

∣

∣

∣

∣

L∞(0, 1
2 )

≤ |g′|L2(0, 1
2 ).

This can be proved via applying the fundamental theorem of calculus on g followed

by Cauchy-Schwarz.

Noting that

(4.24)

∫ δ

0

z4

(

1

δ
+

λ

z
+

λ

1 − z

)2

dz =
δ3

5
×

{

1 + O

(

1

|ln δ|

)}

as δ → 0,

a sufficient asymptotic condition for the nonnegativity of the principal part (the part

not involving f) of Q
(τ )

lower (and also Q(τ )
upper and hence Q(τ ))3 is

(4.25) Ra δ3 = 10λ =
5

ln(1 − δ)/δ
.

This is satisfied asymptotically by

(4.26) δ ∼

(

15

Ra ln Ra

)1/3

, λ ∼ 15 ln Ra, as Ra → ∞.

Combining this with (4.8), (4.20), and (4.23), we arrive at

(Nu)ε ≤

∫ 1

0

(τ ′)2 dz

+
6λ

Ra

∑

m

〈

| f̂3m|2
L2 +

| f̂1m|L2 | d
dz

f̂1m|L2 + | f̂2m|L2 | d
dz

f̂2m|L2

m2

〉

∼
2

δ
+

6λ

Ra
〈|f|L2 |f|H1〉

∼ 2 ×

(

Ra ln Ra

15

)1/3

+
6λ

Ra
〈|f|L2 |f|H1〉.(4.27)

It is then an easy exercise to check, thanks to the a priori estimates on u (equa-

tions (1.13)–(1.17)),

(4.28) 〈|f|L2 |f|H1〉 ≤ cε2 Ra9/2 .

3 Note here that we deviate from the Constantin-Doering approach in the sense that the spectral

constraint is not enforced exactly, but only asymptotically (modulus the part involving f).
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FIGURE 4.1. Schematic log-log plot of the new upper bound on the

Nusselt number (4.30) versus Rayleigh number for different values of

Prandtl number.

Combining the estimates above and the uniform bound of c′ Ra1/2 [8], we have

the following result:

THEOREM 4.2 There exists a constant c independent of Ra and Pr such that

(4.29) (Nu)ε ≤ Ra1/3(ln Ra)1/3 + c
Ra7/2 ln Ra

Pr2
,

as long as the large Prandtl number assumption (1.20) Ra / Pr ≤ c0 is satisfied.

Moreover,

(4.30) (Nu)ε ≤ min

{

Ra1/3(ln Ra)1/3 + c
Ra7/2 ln Ra

Pr2
, c′ Ra1/2

}

.

Notice that the second bound in the theorem does not explicitly require the

large Prandtl number assumption (1.20) since it is implicitly satisfied for large

Rayleigh number if the uniform Prandtl number bound Ra1/2 dominates the new

upper bound.

The upper bound above fits the common belief that the Nusselt number at large

Rayleigh number should be eventually independent of the Prandtl number at large

Prandtl number, and the Nusselt number should scale like Ra1/3 for large Prandtl

number modulo logarithmic terms. In fact, there is even evidence of uniform-

in-Prandtl-number scaling of Ra1/3 for the Nusselt number [1]. However, the

correction term here is not very satisfactory (of the order of Ra7/2 / Pr2), which

grows faster than the known uniform-in-Prandtl-number bound of Ra1/2 [8] at large
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Rayleigh number unless the Prandtl number grows much faster than the Rayleigh

number. Although the correction term can be improved by refining the estimates

from [40], we are not yet able to derive a bound that is consistent with the uniform

Ra1/2 bound for the Boussinesq system and the uniform Ra1/3 bound for the infinite

Prandtl number model in the sense that we are not yet able to derive a bound on the

Nusselt number for the Boussinesq system that consists of the bound for the infinite

Prandtl number model (Ra1/2) plus a correction term of the form Raα / Prβ , with

α ≤ 1
2

and β > 0. However, see [41] for a uniform Ra1/3 (modulo logarithmic

correction) upper bound on the Nusselt number at large Prandtl number.

5 Concluding Remarks

We have demonstrated that the infinite Prandtl number model is a good effective

model for the Boussinesq system for Rayleigh-Bénard convection at large Prandtl

number in terms of stationary statistical properties.

More specifically, we have established the upper semicontinuity of the set of

invariant measures for the Boussinesq system as the Prandtl number approaches

infinity (with the limit being the infinite Prandtl number model). Therefore, equi-

librium statistics of the Boussinesq system can be asymptotically dominated by

equilibrium statistics of the infinite Prandtl number model. This complements our

result on the upper semicontinuity of the global attractors [40]. We are not able to

show the continuity at this point since the set of invariant measures may contain

multiple elements, and we may experience hysteresis-type phenomena. One way

to obtain continuity is by adding appropriate noises as these noises will connect

different branches of the attractor and render the uniqueness of the invariant mea-

sure [13, 17, 25]. The uniqueness of the invariant measure (at any fixed Prandtl

number) leads to the continuity in the Prandtl number (including the singular limit

of Pr → ∞, ε → 0) of the invariant measure. This would be an example of noise-

induced statistical stability. The noise may be justified as accounting for neglected

small effects of various physical mechanisms not represented in the system.

We have also established the upper semicontinuity of the Nusselt number as

the Prandtl number approaches infinity. This implies that the Nusselt number for

the infinite Prandtl number model asymptotically bounds the Nusselt number for

the Boussinesq system at large Prandtl number. This is not a direct consequence

of the upper semicontinuity of the set of invariant measures, since the limit of

the sequence of invariant measures corresponding to the Nusselt numbers for the

Boussinesq system as the Prandtl number approaches infinity may not be an in-

variant measure of the infinite Prandtl number model corresponding to the Nusselt

number of the limit system. Again, we do not have continuity of the Nusselt num-

ber. Yet we strongly believe that continuity is true at large Rayleigh number since

we expect a unique, strongly mixing trajectory/invariant measure that saturates the

Nusselt number at large Rayleigh number. Of course, adding appropriate noise
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leads to the uniqueness of the invariant measure, which further leads to the con-

tinuity of the Nusselt numbers with respect to the Prandtl number. A by-product

that we derived here is that the Nusselt numbers are saturated by ergodic invariant

measures.

A more concrete result that we obtained here is an upper bound on the Nusselt

number for the Boussinesq system of the form

Ra1/3(ln Ra)1/3 + c
Ra7/2 ln Ra

Pr2
.

This bound asymptotically agrees with the optimal bound for the Nusselt number of

the infinite Prandtl number model (Ra1/3 modulo a logarithmic term) to the leading

order at large Prandtl number. This is the first result of this kind.

Finally, we remark that the results and techniques derived here may be applied

to many other systems with two disparate time scales of relaxation type.
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