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Abstract

We study the long time behavior of the Hele-Shaw-Cahn-Hilliard

system (HSCH) which models two phase incompressible Darcian flow

in porous media with matched density but arbitrary viscosity contrast.

We demonstrate that the ω-limit set of each trajectory is a single sta-

tionary solution of the system via Lojasiewicz-Simon type technique.

Moreover, a rate of convergence has been established. Eventual regu-

larity of weak solution, as well as existence of global classical solutions

if the initial data is close to an energy minimizer or the Péclet number

is sufficiently small are also proved in 3D .
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1 Introduction

Multiphase fluid flow in porous media is of great importance in many ar-

eas of science and engineering applications. Well-known examples include
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groundwater study (water table, interface between air and water in soil), oil

recovery in petroleum engineering (oil and water) [5]. There are also emerg-

ing applications in material science (Hele-Shaw cell), fuel cell technology

(water management in PEM fuel cells), as well as biomedical science (tumor

growth modeled as flow in porous media).

There are two types of approaches to multi-phase flow. The first treat

the interface as a sharp one with zero width. The second one recognizes

the micro-scale mixing and hence treat the interface as a transition layer

with finite (small) width (the so-called diffuse interface model or phase field

model) [4]. In this manuscript, we consider the long time dynamics of the fol-

lowing Hele-Shaw-Cahn-Hilliard system (HSCH) which is a diffuse interface

model for two phase incompressible flow in porous media [7, 14]

u = −
1

12η(c)

(
∇p −

1

M
µ∇c

)
, (1.1)

∇ · u = 0, (1.2)

ct + u · ∇c =
1

Pe
∆µ. (1.3)

We will assume that the fluid occupies the two or three dimensional torus

T
d; d = 2, 3 for simplicity. System (1.1)–(1.3) is subject to the initial condi-

tion

c(t, x)|t=0 = c0(x). (1.4) 4

Here u is the velocity of the fluid mixture, c is the order parameter which is

related to the concentration of the fluid (the volume fraction of the first fluid

is given by 1+c
2 ). The chemical potential µ depends on the order parameter

c and is given by

µ(c) = −C∆c + f ′(c). (1.5)

The Helmholtz free energy f(c) is given by the classical double well potential

f(c) = (c2 − 1)2.

p is not the physical pressure but the combination of certain generalized

Gibbs free energy and the gravitational potential (see [14] for more details).

Pe is the diffusion Péclet number, C is the Cahn number, and M is the

2



Mach number. Furthermore, η(c) is the kinematic viscosity coefficient of the

mixture of the two fluids satisfying

(A1) η ∈ C∞(R1), 0 < η ≤ η ≤ η̄ < +∞.

The well-posedness of this HSCH system has been established recently

(global in 2D and local in 3D) [22]. The main purpose of this manuscript is to

investigate the long time behavior of the system (1.1)-(1.4) although some

regularity issue in 3D will be also studied. The Hele-Shaw-Cahn-Hilliard

system can be viewed as appropriate limit of the Navier-Stokes-Cahn-Hilliard

system (NSCH) [14]. Mathematically speaking, the difficulty is about the

same since we dropped the (bad) nonlinear advection term and the (good)

viscous term (replaced by the Darcian term) simultaneously in the velocity

equations for the NSCH system in order to derive the HSCH system. Similar

results for a phase field model for the mixture of two incompressible fluids

(Navier-Stokes-Cahn-Hilliard) were obtained recently [24] (see also [1,6,9] for

some related results). Derivation of various versions of the Navier-Stokes-

Cahn-Hilliard system can be found [10, 16, 17] among others. Convergence

of solutions of the Cahn-Hilliard equation to stationary solutions in various

settings is well-known (see for instance [3, 18, 23] among many others).

Now we state the main results of this paper:

main2d Theorem 1.1. In the 2D case (d = 2), for any c0(x) ∈ Hs(T2) for s > 2,

the system (1.1)–(1.4) admits a unique global solution (c, u) such that

c ∈ C([0,+∞);Hs)∩L2(0,+∞;Hs+2), u ∈ C([0,+∞);Hs−2)∩L2(0,+∞;Hs).

The global solution converges to a certain equilibrium (0, c∞) as time goes to

infinity with the following convergence rate

‖u(·, t)‖Hs−2 + ‖c(·, t) − c∞‖Hs ≤ C(1 + t)−θ/(1−2θ), ∀ t ≥ 1. (1.6) rate

Here C ≥ 0 is a constant depending on ‖c0‖H2 , ‖c∞‖Hs+2 and parameters

Pe, C,M, η̄, η. θ ∈ (0, 1
2) is a constant depending only on c∞, which is a

solution to the stationary Cahn-Hilliard equation:
{

−C∆c∞ + f ′(c∞) = µ∞, x ∈ T
2,∫

T2 c∞dx =
∫

T2 c0dx,
(1.7) sta
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where µ∞ is a constant such that

µ∞ =

∫

T2

f ′(c∞)dx.

main3d Theorem 1.2. The following results hold in the 3D case.

1. Let c0(x) ∈ Hs(T2) for s > 5
2 . If the diffusion Péclet number Pe

is sufficiently small (cf. (4.11) below), the system (1.1)–(1.4) admits a

unique global solution (c, u) such that c ∈ C([0,+∞);Hs)∩L2(0,+∞;Hs+2),

u ∈ C([0,+∞);Hs−2) ∩ L2(0,+∞;Hs).

2. Let c∗ ∈ H1(T3) be a local minimizer of E(c) in the sense that there

exists a δ > 0 such that E(c∗) ≤ E(c) for all c ∈ H1(T3) satisfying∫
T3 cdx =

∫
T3 c∗dx and ‖c − c∗‖H1 < δ. Then there exists a constant

σ ∈ (0, 1] which may depend on c∗, δ and coefficients of the system such

that for any c0 ∈ H3 satisfying
∫

T3 c0dx =
∫

T3 c∗dx and ‖c0 − c∗‖H3 ≤

1, and ‖c0 − c∗‖H2 ≤ σ, the problem (1.1)–(1.4) must admit a unique

global classical solution.

3. Let (c, u) be a weak solution to problem (1.1)-(1.4) on [0,+∞). Then

there is some a T ∗ > 0 such that (c, u) is a classical solution for t ≥ T ∗.

Moreover, the (global) classical solution in 3D enjoys the same long-time

behavior as in 2D case.

The rest of the paper is organised as follows: We recall and prove a

few preliminary results related to the well-posedness of the HSCH system in

section 2. Section 3 is devoted to the long time behavior of classical solutions

in 2D while section 4 is dedicated to the global well-posedness and long time

behavior in 3D.

2 Preliminaries

We first recall the local well-posedness of the Hele-Shaw-Cahn-Hilliard sys-

tem (1.1)-(1.4) (cf. [22, Theorem 3.1]).
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loc Proposition 2.1 (Local Wellposedness). Let c0(x) ∈ Hs(Td) for s > d
2 +1,

d = 2, 3. Then there exists T > 0 such that the system (1.1)–(1.4) has a

unique solution (c, u) in [0, T ] with

c ∈ C([0, T ];Hs(Td))∩L2(0, T ;Hs+2(Td)), u ∈ C([0, T ];Hs−2(Td))∩L2(0, T ;Hs(Td));

and satisfying the following energy estimate for t ∈ [0, T ]:

‖c(t)‖2
Hs +

∫ t

0
‖c(τ)‖2

Hs+2dτ ≤ ‖c0‖
2
Hse

R t

0
G(τ)dτ , (2.1)

where

G(t) = F(‖c‖L∞)(1+‖∇c‖L∞)2(‖∇c‖L∞ +‖c‖
d−2

2

H3 )2(1+‖c‖H2)2[2s]+2, (2.2)

and F is an increasing function on R
+ whose exact form depends on s.

We have the following blow-up criterion of Beale-Kato-Majda type for

system (1.1)–(1.4):

pBKM Proposition 2.2. Let c0(x) ∈ Hs(Td) for s > d
2 +1, and (c, u) be a solution

of (1.1)–(1.4) stated in Theorem 2.1. Let T ∗ be the maximal existence time

of the solution. If T ∗ < +∞, then

∫ T ∗

0
‖∇c(t)‖4

L∞dt = +∞. (2.3) BKM

A typical property of the solutions to Cahn-Hilliard equation is the so-

called mass conservation. Integrating (1.3) over T
d and using (1.2), we have

d

dt

∫

Td

c(t, ·)dx = 0, (2.4)

which implies that
∫

Td

c(t, ·)dx =

∫

Td

c0(·)dx, ∀t ≥ 0. (2.5)

Another important property of system (1.1)-(1.4) is the following basic energy

law (cf. [14, 22]). Let

E(c(t)) :=
C

2
‖∇c(t, ·)‖2 +

∫

Td

f(c(t, x))dx. (2.6) E
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Then E(c(t)) satisfies the following equality

d

dt
E(c(t)) +

1

Pe
‖∇µ‖2 + 12M

∫

Td

η(c)|u|2dx = 0, ∀ t ≥ 0. (2.7) bel

An easy consequence of this energy law is the following estimates.

le Lemma 2.1. We have the following uniform estimates of solutions to system

(1.1)-(1.4) for t ≥ 0:

‖c(t, ·)‖H1 ≤ C, (2.8)
∫ t+1

t
‖c(τ, ·)‖2

H3dτ ≤ CPe, (2.9)

where C is a constant only depending on ‖c0‖H1 and possibly on the param-

eters M,C.

Proof. It follows from the basic energy law (2.7) that

E(c(t))+

∫ t

0

(
1

Pe
‖∇µ(τ, ·)‖2 + 12M

∫

Td

η(c)|u(τ, x)|2dx

)
dτ = E(0) ≤ C(‖c0‖H1).

(2.10) er1

The above inequality easily yields that (2.8) and the following estimates:

∫ +∞

0
‖∇µ(τ, ·)‖2dτ ≤ PeE(0), (2.11)

∫ +∞

0
‖u(τ, ·)‖2dτ ≤

1

12Mη
E(0). (2.12)

Since (cf. [22, pp. 10])

‖c‖H3 ≤ C(‖∇∆c‖ + ‖c‖H2) ≤ C(‖∇µ‖ + ‖f ′′(c)∇c‖ + ‖c‖H2)

≤ C(‖∇µ‖ + ‖c2∇c‖ + ‖c‖H2)

≤ C‖∇µ‖ + C(1 + ‖c‖2
H1)‖c‖H2

≤ C‖∇µ‖ +
1

2
‖c‖H3 + C‖c‖H1 , (2.13)

we infer from (2.13), (2.11) and (2.8) that (2.9) holds.

We now address the global in time existence of weak solutions with initial

data from H1.
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Theorem 2.1. For any c0 ∈ H1(Td), d = 2, 3, system (1.1)–(1.4) admits at

least one global weak solution (c, u) such that for any T > 0

c ∈ L∞(0, T ;H1(Td))∩L2(0, T ;H3(Td))∩H1(0, T ;H−1(Td)), u ∈ L2(0, T ;L2(Td)).

(2.14) reg

Proof. As in [22], we define the projection Pn by

Pnf(x) =
∑

|k|≤n

fke
2πik·x,

1

(2π)d

∫

Td

f(x)e−2πik·xdx = fk.

Consider the approximate problem

un = −
1

12η(cn)

(
∇pn −

1

M
(Pnµ(cn))∇cn

)
,(2.15)

∇ · un = 0, (2.16)

∂tcn + Pn(un · ∇cn) =
1

Pe
∆Pnµ(cn), (2.17)

cn(0) = Pnc0. (2.18)

In analogy to [22], the above problem admits a unique smooth solution cn

on certain time interval [0, Tn]. Multiplying (2.17) by Pnµ(cn), we can see

that the approximate solution also satisfies the basic energy law

d

dt

(
C

2
‖∇cn‖

2 +

∫

Td

f(cn)dx

)
+

1

Pe
‖∇Pnµ(cn)‖2+12M

∫

Td

η(cn)|un|
2dx = 0.

(2.19)

Integrating from 0 to T , we can see that cn is uniformly bounded in L∞(0, T ;H1),

∇Pnµ(cn) is uniformly bounded in L2(0, T ;L2), and by (A1), un is uniformly

bounded in L2(0, T ;L2). Besides, since |
∫

Td Pnµ(cn)dx| = |
∫

Td Pnf ′(cn)dx| ≤

C(‖cn‖+‖cn‖
3
L6), where C is independent of n, we know that Pnµ(cn) is uni-

formly bounded in L2(0, T ;H1). This implies that cn is uniformly bounded in

L2(0, T ;H3). Then, by (2.17) we can obtain that ∂tcn is uniformly bounded

in L2(0, T ;H−1). Summing up, using the well-known Aubin-Lions type com-

pactness theorems, we can find a pair (c, u) satisfying (2.14) such that, up

to subsequences,

un → u, weakly in L2(0, T ;L2);
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cn → c, weakly-* in L∞(0, T ;H1) and weakly in L2(0, T ;H3);

cn → c, strongly in C([0, T ];H1−ε) and L2(0, T ;H3−ε);

∂tcn → ct, weakly in L2(0, T ;H−1).

Consequently, we can pass to the limit in (2.15)-(2.17) that (c, u) solves

(1.1)-(1.3) in the distributional sense.

Before ending this preliminary section, we recall some useful lemma in

the literature which will be used in our later proofs.

KP Lemma 2.2. (cf. [13]) For s ≥ 0, there holds

‖fg‖Hs ≤ C(‖f‖L∞‖g‖Hs + ‖f‖Hs‖g‖L∞).

WZle1 Lemma 2.3. (cf. [22, Lemma 6.2]) For s ≥ 0 and σ ∈ (0, d
2 ], there holds

‖fg‖Hs ≤ C
(
‖f‖Hs‖g‖L∞ + ‖f‖

H
d
2
−σ‖g‖Hs+σ

)
.

WZle2 Lemma 2.4. (cf. [22, Lemma 6.4]) Denote the Fourier multiplier 〈D〉s that

〈D〉sf(x) =
∑

k∈Zd

(1 + |k|2)
s
2 e2πik·xf̂(k).

For s > 0, there holds

‖〈D〉s(fg) − f〈D〉sg‖ ≤ C
(
‖f‖Hs+2‖g‖ + ‖f‖H2‖g‖

Hs− 1
2

)
.

3 Long-time behavior of global solutions in 2D

The goal of this section is to demonstrate the convergence to stationary

solution of the Cahn-Hilliard equation in the 2D case.

3.1 Uniform-in-time estimates

Based on Lemma 2.1 and Proposition 2.2, the global existence in 2D can be

proved (cf. [22])

Proposition 3.1. Let c0(x) ∈ Hs(T2) for s > 2, the unique local solution

(c, u) for system (1.1)–(1.4) obtained in Theorem 2.1 is global.
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In what follows, we proceed to obtain some uniform-in-time estimates of

solution (c, u), which is crucial in order to study the long-time behavior of

global solutions to system (1.1)–(1.4). The estimate of the modified pressure

p plays an important role in subsequent proof.

pes Lemma 3.1. cf. [22, Proposition 2.1] Let s ≥ 0. Assume that c ∈ Hs+2(Td),

and p is a smooth solution of the elliptic problem

div

(
1

η(c)
∇p

)
= div

(
1

Mη(c)
µ(c)∇c

)
. (3.1) peq

If s ∈ (k−2
2 , k

2 ] for some k ∈ N, then the solution p satisfies

‖∇p‖Hs ≤ F(‖c‖L∞)(1 + ‖∇c‖L∞)(1 + ‖c‖H2)k‖c‖Hs+2 . (3.2) nphs

Here, F is an increasing function on R
+ whose exact form depends on s. In

particular, when s = 0, we have

‖∇p‖ ≤ C(‖∆c‖ + ‖c‖3
L6 + ‖c‖)‖∇c‖L∞ . (3.3) npl2

ch22d Lemma 3.2. In the 2D case (d = 2) the following estimates hold for the

global solutions to system (1.1)–(1.4) for all t ≥ 0:

‖c(t, ·)‖H2 ≤ C, (3.4)
∫ t+1

t
‖c(τ, ·)‖2

H4dτ ≤ C, (3.5)

where C is a constant only depending on ‖c0‖H2 and possibly on parameters

Pe,M,C. If t ≥ 1, the constant C can be chosen so that it is a function of

‖c0‖H1 instead of ‖c0‖H2 .

Proof. A direct computation yields that

1

2

d

dt
‖∆c‖2 +

C

Pe
‖∆2c‖2 = −(u · ∇c,∆2c) +

1

Pe
(∆f ′(c),∆2c)

≤ ‖u‖‖∇c‖L∞‖∆2c‖ +
1

Pe
‖∆f ′(c)‖‖∆2c‖

:= I1 + I2. (3.6)

Using the Agmon inequality and (2.8), we have

‖c‖L∞ ≤ C‖c‖
1

2

H2‖c‖
1

2 ≤ C(1 + ‖∆c‖
1

2 ), (3.7)
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‖∇c‖L∞ ≤ C‖∇c‖
1

2

H2‖∇c‖
1

2 ≤ C(1 + ‖∆c‖
1

2 + ‖∇∆c‖
1

2 ). (3.8)

Keeping the above estimates in mind, we infer from (3.3) that

‖u‖ ≤ C(‖∇p‖ + ‖µ(c)∇c‖) ≤ C(‖µ‖ + ‖∆c‖ + ‖c‖3
L6 + ‖c‖)‖∇c‖L∞

≤ C(1 + ‖∆c‖)‖∇c‖L∞ , (3.9)

‖∆f ′(c)‖ ≤ C(1 + ‖c‖2
L∞)‖c‖H2 + C(1 + ‖c‖L6)‖∇c‖2

L6 ≤ C(1 + ‖∆c‖2).

(3.10) Def2

As a consequence, we get

I1 ≤
C

4Pe
‖∆2c‖2 + C‖u‖2‖∇c‖2

L∞

≤
C

4Pe
‖∆2c‖2 + C(1 + ‖∆c‖2)(1 + ‖∆c‖

1

2 + ‖∇∆c‖
1

2 )4

≤
C

4Pe
‖∆2c‖2 + C(1 + ‖∆c‖2 + ‖∇∆c‖2)‖∆c‖2 + C(1 + ‖∇∆c‖2),

I2 ≤
C

4Pe
‖∆2c‖2 + C‖∆f ′(c)‖2 ≤

C

4Pe
‖∆2c‖2 + C(1 + ‖∆c‖4), (3.11)

which implies that

d

dt
‖∆c‖2 +

C

Pe
‖∆2c‖2 ≤ C(1 + ‖∆c‖2 + ‖∇∆c‖2)‖∆c‖2 + C(1 + ‖∇∆c‖2).

(3.12) dDc

Using the a priori estimate (2.9), for t ∈ [0, 1], we have

‖∆c(t)‖2 ≤ eC
R t

0
(1+‖∆c(τ)‖2+‖∇∆c(τ)‖2)dτ

(
‖∆c0‖

2 + C

∫ t

0
(1 + ‖∇∆c(τ)‖2)dτ

)

≤ C, t ∈ [0, 1].

Besides, by (2.9), we can apply the uniform Gronwall inequality that for any

t ≥ 0,

‖∆c(t + 1)‖ ≤ C, t ≥ 0.

Combining the above estimates, we arrive at (3.4). Then we integrate (3.12)

with respect to time from t to t + 1 (t ≥ 0), it follows from (2.9) and (3.4)

that ∫ t+1

t
‖∆2c(τ)‖2dτ ≤ C, ∀t ≥ 0,

which implies (3.5). The proof is complete.
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The above result can be strengthened to higher order Sobolev spaces in

a straightforward fashion. Indeed, we have

chs2d Proposition 3.2. In the 2D case (d = 2), for any s ∈ (2k, 2k + 2] (k ∈ N),

the following estimates hold for the global solutions to system (1.1)–(1.4):

‖c(t, ·)‖Hs ≤ C, ∀t ≥ k, (3.13)
∫ t+1

t
‖c(τ, ·)‖2

Hs+2dτ ≤ C, ∀t ≥ k, (3.14)

where C is a constant only depending on ‖c0‖H2 and possibly on the param-

eters Pe,M,C, η. If c0 ∈ Hs, then the above estimates hold for t ≥ 0 with

constant C depending on ‖c0‖Hs instead of ‖c0‖H2 .

Proof. The following higher-order differential inequality can be obtained by

using the pressure estimate Lemma 3.1 and commutator estimates (cf. [13]

and [22, Appendix]). We refer to [22] for the details where the calculation

was done for approximate solutions.

d

dt
‖c‖2

Hs + ‖c‖2
Hs+2 ≤ G(t)‖c‖2

Hs , (3.15) highcs

where

G(t) = F(‖c‖L∞ )(1 + ‖∇c‖L∞)2‖∇c‖2
L∞(1 + ‖c‖H2)2[2s]+2,

and F is a certain increasing function on R
+. It follows from (3.7), (3.8),

the uniform estimates (3.4) and (2.9) (cf. Lemma 3.2) that

∫ t+1

t
G(τ)dτ ≤ C(‖c‖H2)

∫ t+1

t
(1 + ‖c(τ)‖2

H3)dτ ≤ C, ∀t ≥ 0,

where C is a constant only depending on ‖c0‖H2 , and possibly on parameters

Pe,M,C, η. Next, we prove our conclusion by an easy iteration.

(i) k = 1. For any s ∈ (2, 4], we infer from (3.5) that

∫ t+1

t
‖c(τ, ·)‖2

Hsdτ ≤

∫ t+1

t
‖c(τ, ·)‖2

H4dτ ≤ C, ∀t ≥ k − 1 = 0. (3.16) ichsa

By (3.15), (3.16) and (3.16), we are able to apply the uniform Gronwall

inequality that (3.13) and (3.14) hold for s ∈ (2, 4].
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(ii) Suppose that (3.13) and (3.14) hold for s = 2m + 2 with k = m ∈ N.

Then for s ∈ (2m + 2, 2m + 4] with k = m + 1, we have

∫ t+1

t
‖c(τ, ·)‖2

Hs dτ ≤

∫ t+1

t
‖c(τ, ·)‖2

H2m+4dτ ≤ C, t ≥ m.

Using the uniform Gronwall inequality again, we have (3.13) and (3.14) hold

for s ∈ (2m + 2, 2m + 4] with k = m + 1.

To complete the result to t ≥ 0, we just notice that for any s ∈ (2k, 2k+2],

applying the standard Gronwall inequality to (3.15) and using the fact (3.16),

we get

‖c(t)‖2
Hs+

∫ t

0
‖c(τ)‖2

Hs+2dτ ≤ ‖c0‖
2
Hse

R t

0
G(τ)dτ ≤ ‖c0‖

2
Hse

R k

0
G(τ)dτ , ∀ t ∈ [0, k).

hsrem Remark 3.1. By a minor modification in the above proof, we can obtain the

following result: for any s > 2 and arbitrary δ > 0, the following estimates

hold:

‖c(t, ·)‖Hs ≤ C, ∀t ≥ δ, (3.17)
∫ t+1

t
‖c(τ, ·)‖2

Hs+2dτ ≤ C, ∀t ≥ δ, (3.18)

where C is a constant depending on ‖c0‖H2 , δ and the parameters Pe,M,C, η.

3.2 Decay of energy dissipation

conmuP Proposition 3.3.

lim
t→+∞

‖∇µ(t)‖ = 0. (3.19) conmu

Proof. Using integration by parts and equation (1.3), we obtain

1

2

d

dt
‖∇µ‖2 = −(µt,∆µ)

= C

(
∆

(
−u · ∇c +

1

Pe
∆µ

)
,∆µ

)
−

(
f ′′(c)

(
−u · ∇c +

1

Pe
∆µ

)
,∆µ

)

= −
C

Pe
‖∇∆µ‖2 + C(∇(u · ∇c),∇∆µ) + (f ′′(c)u · ∇c,∆µ) −

1

Pe
(f ′′(c)∆µ,∆µ)

12



:= −
C

Pe
‖∇∆µ‖2 + I3 + I4 + I5. (3.20)

Note that

I3 ≤ C‖∇u‖‖∇c‖L∞‖∇∆µ‖ + C‖u‖‖∆c‖L∞‖∇∆µ‖,

I4 ≤ C(1 + ‖c‖2
L∞)‖u‖‖∇c‖L∞‖∆µ‖,

I5 ≤ C(1 + ‖c‖2
L∞)‖∆µ‖2.

According to Proposition 3.2, we have the uniform estimate that ‖c(t)‖H5 ≤

C for t ≥ 2. Then I3, ..., I5 are uniformly bounded and as a result,

d

dt
‖∇µ‖2 ≤ C, ∀t ≥ 2,

where C is a constant only depending on ‖c0‖H2 and possibly on parameters

Pe,M,C, η. On the other hand, (2.11) implies that ‖∇µ‖2 ∈ L1(0,+∞).

Our conclusion follows immediately.

In order to study the decay property of the velocity field u, we first derive

an estimate of ∇pt.

pets Lemma 3.3. Suppose that c ∈ H6(T2), we have the following estimate:

‖∇pt(t)‖ ≤ C‖c‖H6(1 + ‖c‖2
H4) + C(1 + ‖c‖5

H4), ∀ t ≥ 0, (3.21) pte1

where C is a constant depending on ‖c0‖H2 , and possibly on the parameters

Pe, M, C, η.

Proof. Since for the solution c to system (1.1)-(1.4), we are able to obtain

its uniform H2-norm estimate for all time (cf. Lemma 3.2), in what follows,

we will absorb ‖c‖H2 into the generic constant C for the sake of simplicity.

Differentiating (3.1) with respect to t, we can see that pt satisfies the

following elliptic problem

div

(
1

η(c)
∇pt

)
= div

[
η′(c)

η(c)2

(
∇p −

1

M
µ(c)∇c

)
ct

]
−

C

M
div

(
1

η(c)
∆ct∇c

)

+
1

M
div

(
1

η(c)
f ′′(c)ct∇c

)
+

1

M
div

(
1

η(c)
µ(c)∇ct

)
.(3.22)
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Then we have

‖∇pt‖ ≤

∥∥∥∥
η′(c)

η(c)

(
∇p −

1

M
µ(c)∇c

)
ct

∥∥∥∥+
C

M
‖∆ct∇c‖

+
1

M

∥∥f ′′(c)ct∇c
∥∥+

1

M
‖µ(c)∇ct‖

:= P1 + P2 + P3 + P4. (3.23)

It is not difficult to see that

4∑

i=1

Pi

≤

∥∥∥∥
η′(c)

η(c)

∥∥∥∥
L∞

(
‖∇p‖L∞ +

1

M
‖µ(c)∇c‖L∞

)
‖ct‖ +

C

M
‖∆ct‖‖∇c‖L∞

+
1

M
‖f ′′(c)‖L∞‖ct‖‖∇c‖L∞ +

1

M
‖µ(c)‖L∞‖∇ct‖

≤ C[1 + ‖∇p‖L∞ + ‖c‖3
L∞ + (1 + ‖µ‖ + ‖c‖2

L∞)‖∇c‖L∞ + ‖∆c‖L∞ ]‖ct‖H2

≤ C(1 + ‖∇p‖L∞ + ‖∇c‖L∞ + ‖∆c‖L∞)‖ct‖H2

≤ C(1 + ‖∇p‖H2 + ‖c‖H4)‖ct‖H2 . (3.24)

By Lemma 3.1, we have

‖∇p‖H2 ≤ F(‖c‖L∞)(1 + ‖∇c‖L∞)(1 + ‖c‖H2)4‖c‖H4

≤ C(1 + ‖c‖H3)‖c‖H4 . (3.25)

It remains to estimate ‖ct‖, which involves the highest order derivative of c.

First, we infer from equation (1.3) that

‖ct‖H2 ≤ C(‖∆µ‖H2 + ‖u · ∇c‖H2).

By Lemma 2.2, we have

‖∆µ‖H2 ≤ C(‖∆2c‖H2 + ‖∆f ′(c)‖H2) ≤ C‖c‖H6 + C‖f ′(c)‖H4

≤ C‖c‖H6 + C(1 + ‖c‖2
L∞)‖c‖H4

≤ C(‖c‖H6 + ‖c‖H4). (3.26)

and

‖u · ∇c‖H2 ≤ C(‖u‖H2‖∇c‖L∞ + ‖u‖L∞‖∇c‖H2).

14



Using the equation (1.1), Lemma 2.2 and assumption (A1), we get

‖u‖L∞ ≤ C‖u‖H2 = C

∥∥∥∥
1

12η(c)

(
∇p −

1

M
µ∇c

)∥∥∥∥
H2

≤ C

∥∥∥∥
1

η(c)

∥∥∥∥
L∞

(‖∇p‖H2 + ‖µ∇c‖H2) +

∥∥∥∥
1

η(c)

∥∥∥∥
H2

(‖∇p‖L∞ + ‖µ∇c‖L∞)

≤ C(‖∇p‖H2 + ‖µ‖H2‖∇c‖L∞ + ‖µ‖L∞‖∇c‖H2)

+C(1 + ‖c‖H2 + ‖∇c‖2
L4)(‖∇p‖L∞ + ‖µ‖L∞‖∇c‖L∞)

≤ C‖∇p‖H2 + C(1 + ‖c‖H4)‖c‖H3 .

As a consequence, we obtain that

‖u · ∇c‖H2 ≤ C‖c‖H3‖u‖H2 ≤ C‖c‖H3‖∇p‖H2 + C(1 + ‖c‖H4)‖c‖2
H3 ,

which together with (3.26) yields

‖ct‖H2 ≤ C(‖c‖H6 + ‖c‖H3‖∇p‖H2 + ‖c‖2
H3‖c‖H4 + ‖c‖2

H4 + 1). (3.27) ecth2

Combining (3.24), (3.25) and (3.27), we conclude that

‖∇pt‖ ≤ C(1 + ‖∇p‖H2 + ‖c‖H4)(‖c‖H6 + ‖c‖H3‖∇p‖H2 + ‖c‖2
H3‖c‖H4 + ‖c‖2

H4 + 1)

≤ C(1 + ‖c‖2
H4)(‖c‖H6 + ‖c‖2

H3‖c‖H4 + ‖c‖2
H4 + 1)

≤ C‖c‖H6(1 + ‖c‖2
H4) + C(1 + ‖c‖5

H4).

The proof is complete.

conup Proposition 3.4.

lim
t→+∞

‖u(t)‖ = 0. (3.28) conu

Proof. A direct calculation yields

1

2

d

dt
‖u‖2 = (ut, u) ≤ ‖ut‖‖u‖. (3.29)

(3.9) implies that

‖u‖ ≤ C(1 + ‖u‖H2)‖u‖H3 . (3.30) eu

We infer from the equation (1.1) that

ut =
η(c)′

12η2(c)

(
∇p −

1

M
µ∇c

)
ct −

1

12η(c)
∇pt +

1

12Mη(c)
µ(c)∇c.
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Then it follows from Lemma 3.3 and (3.23), (3.24) that

‖ut‖ ≤
1

12

∥∥∥∥
1

η(c)

∥∥∥∥
L∞

[
‖∇pt‖ +

∥∥∥∥
η′(c)

η(c)

(
∇p −

1

M
µ(c)∇c

)
ct

∥∥∥∥+
C

M
‖∆ct∇c‖

+
1

M

∥∥f ′′(c)ct∇c
∥∥+

1

M
‖µ(c)∇ct‖

]

≤
C

η

(
‖∇pt‖ +

4∑

i=1

Pi

)

≤ C‖c‖H6(1 + ‖c‖2
H4) + C(1 + ‖c‖5

H4). (3.31)

By Proposition 3.2 (with s = 6), we have ‖c(t)‖H6 ≤ C, ∀t ≥ 2. As a result,

we infer from (3.30) and (3.31) that d
dt‖u‖

2 ≤ C for all t ≥ 2. On the other

hand, (2.12) implies that ‖u‖2 ∈ L1(R+). Therefore, our conclusion (3.28)

follows.

Remark 3.2. Propositions 3.4, 3.3 and (A1) implies that the energy dissipa-

tion of system (1.1)-(1.4) (cf. (2.7)) D(t) := 1
Pe

‖∇µ(t, ·)‖2+12M
∫

Td η(c(t, ·))|u(t, ·)|2dx

decays to 0 as time goes to infinity. This is expected since the total energy

E is bounded below.

3.3 Convergence to equilibria

Here we show the convergence of each trajectory to a certain stationary

solution. We first recall the definition of the ω-limit set.

The ω-limit set of (c0) ∈ Hs is defined as follows:

ω(c0) = {(c∞(x)) | there exists {tn} ր ∞ such that

c(tn) → c∞ in Hs, as tn → +∞}.

And we define the set of stationary points associated with c0 as

S =

{
φ ∈ Hs | − C∆φ + f ′(φ) =

∫

T2

f ′(φ)dx, a.e. in T
2,

∫

T2

φdx =

∫

T2

c0dx

}
.

esci Proposition 3.5. Any φ ∈ S is a C∞ function and its Hs-norms (s ≥ 0)

are bounded by a constant depending on |
∫

T2 c0dx| and C.
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Proof. The proof follows from classical elliptic regularity theory and boot-

strap argument. We first notice that

C‖∇φ‖2 + 4

∫

T2

(φ4 − φ2)dx = 4

∫

T2

(φ3 − φ)dx

∫

T2

φdx

= 4

(∫

T2

φ3dx −

∫

T2

c0dx

)∫

T2

c0dx ≤ 4

∣∣∣∣

∫

T2

φ3dx

∫

T2

c0dx

∣∣∣∣ .

Using Young’s inequality, we have

C‖∇φ‖2 + 4

∫

T2

φ4dx ≤ 4

∫

T2

φ2dx + 4

∣∣∣∣

∫

T2

φ3dx

∣∣∣∣

∣∣∣∣

∫

T2

c0dx

∣∣∣∣

≤ 2

∫

T2

φ4dx + 4 + 27

∣∣∣∣
∫

T2

c0dx

∣∣∣∣
4

,

which implies that

‖φ‖2
H1 ≤ C

(
C,

∣∣∣∣
∫

T2

c0dx

∣∣∣∣

)
.

By elliptic estimate and Sobolev embedding, we get

‖φ‖H2 ≤ C (‖∆φ‖ + ‖φ‖) ≤ C

(
‖f ′(φ)‖ +

∣∣∣∣

∫

T2

f ′(φ)dx

∣∣∣∣ + ‖φ‖

)

≤ C(‖φ‖3
L6 + ‖φ‖L3 + ‖φ‖) ≤ C.

Then for s > 0, by a classical result in [21] and the embedding H2 →֒ L∞,

we have

‖φ‖Hs+2 ≤ C

(
‖f ′(φ)‖Hs +

∣∣∣∣
∫

T2

f ′(φ)dx

∣∣∣∣ + ‖φ‖

)

≤ C(1 + ‖φ‖L∞)⌊s⌋+1‖φ‖Hs + C‖φ‖L3 + C‖φ‖

≤ C‖φ‖Hs + C. (3.32)

Using (3.32), we can prove our conclusion by a simple induction.

It is then easy to check the following relationship between the ω-limit set

and the set of associated stationary points.

lim Proposition 3.6. The ω-limit set of c0 is a nonempty compact subset in

Hs. Besides, all asymptotic limiting points c∞ of problem (1.1)–(1.4) belong

to S, i.e., ω(c0) ⊂ S.
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Proof. Due to Proposition 3.2 and the compact embedding Hs+1 →֒ Hs,

ω(c0) is nonempty and compact. There exists a function c∞ ∈ Hs and an

increasing unbounded sequence {tn}
∞
n=1 such that

lim
tn→+∞

‖c(tn) − c∞‖Hs = 0. (3.33) KKK

We infer from (3.19) and the Poincaré inequality that

lim
t→+∞

∥∥∥∥−C∆c(t) + f ′(c(t)) −

∫

T2

f ′(c(t)))dx

∥∥∥∥ = 0.

This and (3.33) yield that

∥∥∥∥−C∆c∞ + f ′(c∞) −

∫

T2

f ′(c∞))dx

∥∥∥∥

≤ C‖∆(c∞ − c(tn))‖ + ‖f ′(c∞) − f ′(c(tn))‖ +

∥∥∥∥

∫

T2

(f ′(c∞) − f ′(c(tn)))dx

∥∥∥∥

+

∥∥∥∥−C∆c(tn) + f ′(c(tn)) −

∫

T2

f ′(c(tn)))dx

∥∥∥∥
→ 0, as tn → +∞.

Therefore, c∞ ∈ S.

Next, we demonstrate that the ω-limit set of each trajectory consists of

one single stationary point.

For this purpose, we notice that thanks to Proposition 3.6, there exists

an equilibrium c∞ ∈ ω(c0) and an increasing unbounded sequence {tn}
∞
n=1

such that

lim
tn→+∞

‖c(tn) − c∞‖Hs = 0. (3.34) KKKa

We see from the basic energy law (2.7) that E(c(t)) is non-negative and

decreasing in time. Moreover, E(c(t)) ≥ E(c∞), for all t > 0. As a result, it

has a finite limit as time goes to infinity. (3.34) implies that

lim
tn→+∞

E(c(tn)) = E(c∞).

It follows from (1.3) and uniform estimate Proposition 3.2 that

‖ct‖H−1 ≤ C(‖(u · ∇)c‖H−1 + ‖∆µ‖H−1) ≤ C(‖u‖‖∇c‖L3 + ‖∇µ‖)
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≤ C (‖u‖ + ‖∇µ‖) . (3.35)

In what follows, we shall apply the well-known Łojasiewicz-Simon approach

to prove the convergence of whole trajectory c(t). The procedure is standard

and we only sketch the proof here.

First, we introduce the following Łojasiewicz–Simon type inequality. Let

P : L2 7→ L2
0 be a projection operator such that for any φ ∈ L2, Pφ =

φ −
∫

T2 φdx. We have (cf. e.g., [8])

LS Lemma 3.4 (Łojasiewicz–Simon Inequality). Let c∞ ∈ D be a critical point

of E. Then there exist constants θ ∈ (0, 1
2 ) and β > 0 depending on c∞ such

that for any c ∈ D satisfying ‖c − c∞‖H2 < β, such that

‖P(−C∆c + f ′(c))‖ ≥ |E(c) − E(c∞)|1−θ. (3.36) ls

First we consider the trivial case. If there is a t1 ∈ R
+ such that

E(c(t1)) = E(c∞), then ‖u(t)‖ = ‖∇µ(t)‖ = 0 for all t ≥ t1 by virtue

of (2.7). Together with (3.35), it implies that c is independent of time for

all t ≥ t1. Notice (3.34), we conclude that

lim
t→+∞

‖c(t) − c∞‖Hs = 0. (3.37) c-con

Therefore, we only need to consider the nontrivial case that E(c(t)) > E(c∞)

for all t ≥ 0. Due to the continuity c ∈ C([0,+∞),H2), by a classical

contradiction argument first introduced in [12], we can show that there is a

time t0 > 0 such that for all t ≥ t0, c(t) satisfies the condition of Lemma

3.4, i.e., ‖c(t)− c∞‖H2 < β. Then for the constant θ ∈ (0, 1
2) in Lemma 3.4,

using Lemma 3.4 and (2.7), we calculate that

−
d

dt
(E(c(t)) − E(c∞))θ = −θ(E(c(t)) − E(c∞))θ−1 d

dt
E(c(t))

≥
Cθ(‖u‖2 + ‖∇µ‖2)

‖∇µ‖
≥ C(‖u‖ + ‖∇µ‖), ∀ t ≥ t0. (3.38)

Integrating from t0 to ∞, we get

∫ ∞

t0

(‖u(τ)‖ + ‖∇µ(τ)‖)dτ < +∞,
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which together with (3.35) yields

∫ ∞

t0

‖ct(τ)‖H−1dτ < +∞.

Thus, we can conclude that c(t) converges in H−1 as t → +∞. This fact

together with the compactness of c in Hs and (3.34) indicates that (3.37)

holds.

3.4 Rate of Convergence

Next, we study the rate of convergence. By Proposition 3.2 and Remark

3.5, we know that for any s ≥ 0, the Hs-norms of c and c∞ are bounded for

t ≥ 1.

The H−1-estimate for c− c∞ follows from the classical argument in [11].

By (3.38) and Lemma 3.4, we have

d

dt
(E(c(t)) − E(c∞)) + C(E(c(t)) − E(c∞))2(1−θ) ≤ 0, t ≥ t0,

which implies

E(c(t)) − E(c∞) ≤ C(1 + t)−1/(1−2θ), t ≥ t0.

Integrating (3.38) from t to ∞, (t ≥ t0), and using (3.35), we obtain

∫ ∞

t
‖ct‖H−1dt ≤ C(1 + t)−θ/(1−2θ), t ≥ t0,

which implies

‖c − c∞‖H−1 ≤ C(1 + t)−θ/(1−2θ), t ≥ 0.

Denote

r(t) = c(t) − c∞.

Since µ∞ = −C∆c∞+f ′(c∞) is a constant, we infer from the equation (1.3)

that

rt + u · ∇(r + c∞) =
1

Pe
∆(−C∆r + g(c, c∞)r). (3.39) d
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where by the expression of f ,

g(c, c∞)r := f ′(c) − f ′(c∞) = 4(c2 + cc∞ + c2
∞ − 1)r.

Next, we try to show the same convergence rate for arbitrary Hs-norm with

s ≥ 0.

For this aim, we need the following estimate of pressure difference whose

proof is based on the argument for Lemma 3.1 (cf. [22]):

Lemma 3.5. Assume that c, c∞ ∈ Hs+2 (s ≥ 2), we have

‖∇(p − p∞)‖Hs ≤ C‖r‖Hs+2, (3.40) nphsi

where C is a constant depending on ‖c‖Hs+2 , ‖c∞‖Hs+2 and the parameters

Pe, C,M, η̄, η.

Proof. It follows from (A1) and u∞ = 0 = − 1
12η(c∞)

(
∇p∞ − 1

M
µ∞∇c∞

)

that

∇p∞ −
1

M
µ∞∇c∞ = 0.

Then we can rewrite equation (1.1) as follows

u = −
1

12η(c)

[
∇(p − p∞) −

1

M
((µ − µ∞)∇(r + c∞) + µ∞∇r)

]
. (3.41) diu

Applying div operator to (3.41), we get

div

(
1

η(c)
∇(p − p∞)

)
=

1

M
div

[
1

η(c)
((µ − µ∞)∇c + µ∞∇r)

]
. (3.42) dip

It easily follows from the energy estimate that

‖∇(p − p∞)‖ ≤
η̄

ηM
(‖(µ − µ∞)∇(r + c∞)‖ + ‖µ∞∇r‖)

≤ C(‖∆r‖ + ‖g(c, c∞)r‖ + ‖∇r‖)

≤ C‖r‖H2 . (3.43)

For higher-order estimate, we apply 〈D〉s to (3.42) and write the result in

the following equivalent form

div

(
1

η(c)
∇〈D〉s(p − p∞)

)
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= div〈D〉s
[

1

Mη(c)
((µ − µ∞)∇c + µ∞∇r)

]

−div

[
〈D〉s

(
1

η(c)
∇(p − p∞)

)
−

(
1

η(c)
∇〈D〉s(p − p∞)

)]

:= div(A + B),

which yields that

‖∇(p − p∞)‖Hs ≤ η̄(‖A‖ + ‖B‖). (3.44) pAB

Since µ − µ∞ = −C∆r + g(c, c∞)r, we have
∥∥∥∥

1

η(c)
(µ − µ∞)∇c

∥∥∥∥
Hs

≤

∥∥∥∥
C

η(c)
∆r∇c

∥∥∥∥
Hs

+

∥∥∥∥
1

η(c)
(g(c, c∞)r∇c)

∥∥∥∥
Hs

.

Moreover, by Lemma 2.2, we obtain
∥∥∥∥

C

η(c)
∆r∇c

∥∥∥∥
Hs

≤ C

∥∥∥∥
1

η(c)
∇c

∥∥∥∥
L∞

‖∆r‖Hs + C

∥∥∥∥
1

η(c)
∇c

∥∥∥∥
Hs

‖∆r‖L∞

≤ C‖r‖Hs+2,

∥∥∥∥
1

η(c)
(g(c, c∞)r∇c)

∥∥∥∥
Hs

≤ C

∥∥∥∥
1

η(c)
∇c

∥∥∥∥
L∞

‖g(c, c∞)r‖Hs + C

∥∥∥∥
1

η(c)
∇c

∥∥∥∥
Hs

‖g(c, c∞)r‖L∞

≤ C(‖g(c, c∞)‖L∞‖r‖Hs + ‖g(c, c∞)‖Hs‖r‖L∞ + ‖g(c, c∞)‖L∞‖r‖L∞)

≤ C‖r‖Hs+2 .

∥∥∥∥
1

Mη(c)
µ∞∇r

∥∥∥∥
Hs

≤ C

∥∥∥∥
1

η(c)

∥∥∥∥
L∞

‖∇r‖Hs+C

∥∥∥∥
1

η(c)

∥∥∥∥
Hs

‖∇r‖L∞ ≤ C‖r‖Hs+2 .

Therefore,

‖A‖ ≤ C‖r‖Hs+2. (3.45) pA

By the commutator estimate Lemma 2.4 and interpolation inequalities, we

have

‖B‖ ≤ C

(∥∥∥∥
1

η(c)

∥∥∥∥
Hs+2

‖∇(p − p∞)‖ +

∥∥∥∥
1

η(c)

∥∥∥∥
H2

‖∇(p − p∞)‖
Hs− 1

2

)

≤ C

(
‖∇(p − p∞)‖ + ‖∇(p − p∞)‖

2s−1

2s

Hs ‖‖∇(p − p∞)‖
1

2s

)
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≤
1

2η̄
‖∇(p − p∞)‖Hs + C‖∇(p − p∞)‖. (3.46)

Finally, it follows from (3.44), (3.45), (3.46) and (3.43) that (3.40) holds.

The proof is complete.

We have known that for any s ≥ 2, the following uniform estimates hold

(cf. Remark 3.1):

‖c(t, ·)‖Hs ≤ C, ∀t ≥ 1, (3.47)

‖c∞‖Hs ≤ C,

where C is a constant depending on ‖c0‖H2 , and the parameters Pe,M,C, η.

Taking the Hs inner product of equation (3.39) with r, we obtain

1

2

d

dt
‖r‖2

Hs +
C

Pe
‖∆r‖2

Hs = (∆g(c, c∞)r, r)Hs − (u · ∇(r + c∞), r)Hs .(3.48)

Using integration by parts and Lemma 2.2, we can see that

|(∆g(c, c∞)r, r)Hs | ≤ ‖g(c, c∞)r‖Hs‖∆r‖Hs

≤ C(‖g(c, c∞)‖L∞‖r‖Hs + ‖g(c, c∞)‖Hs‖r‖L∞)‖∆r‖Hs

≤
C

2Pe
‖∆r‖2

Hs + C‖r‖2
Hs . (3.49)

|(u · ∇(r + c∞), r)Hs | ≤ ‖u · ∇c‖Hs‖r‖Hs

≤ C(‖u‖Hs‖∇c‖L∞ + ‖u‖L∞‖∇c‖Hs)‖r‖Hs

≤ C‖u‖Hs‖r‖Hs . (3.50)

It remains to estimate ‖u‖Hs . We infer from (3.41), (3.40) that

‖u‖Hs ≤ C

∥∥∥∥
1

η(c)
∇(p − p∞)

∥∥∥∥
Hs

+ C

∥∥∥∥
1

η(c)
(µ − µ∞)∇c

∥∥∥∥
Hs

+ C

∥∥∥∥
1

η(c)
µ∞∇r

∥∥∥∥
Hs

≤ C(‖∇(p − p∞)‖L∞ + ‖∇(p − p∞)‖Hs) + C(‖µ − µ∞‖Hs + ‖µ − µ∞‖L∞)

+C|µ∞|(‖∇r‖Hs + ‖∇r‖L∞)

≤ C(‖∇(p − p∞)‖Hs + ‖µ − µ∞‖Hs + ‖r‖Hs+1)

≤ C‖r‖Hs+2. (3.51)
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Since

‖r‖Hs+2 ≤ C(‖∆r‖Hs + ‖r‖Hs),

‖r‖Hs ≤ C‖r‖
s+1

s+3

Hs+2‖r‖
2

s+3

H−1 ≤ ǫ‖r‖Hs+2 + Cǫ‖r‖H−1 ,

then combining (3.48)-(3.51) and taking ǫ sufficiently small, we obtain

d

dt
‖r‖2

Hs + C‖r‖2
Hs+2 ≤ C‖r‖2

H−1 , t ≥ 1.

This and (3.39) implies that

d

dt
‖r‖2

Hs + C‖r‖2
Hs ≤ C(1 + t)−2θ/(1−2θ), (3.52)

which yields our conclusion (1.6) (cf. [23]).

4 Global wellposedness and long-time behavior in

3D

In this section we deal with the 3D case. We first show global in time well-

posedness of the Hele-Shaw-Cahn-Hilliard system under the assumption that

either (1) the Péclet number is small, or (2) the initial data is close to a

local minimizer of the energy. We then deduce the eventual regularity of all

trajectories as well as their convergence to stationary solutions.

uni3d Lemma 4.1. For the 3D case (d = 3), if the diffusion Péclet number Pe is

sufficiently small (cf. (4.11)), then we have the uniform estimate

‖c(t)‖H2 ≤ C, ∀ t ≥ 0, (4.1) H23d

∫ t+1

t
‖c(τ)‖2

H4dτ ≤ C, t ≥ 0. (4.2) iH43d

Proof. Using the Agmon inequality and (2.8), we have

‖c‖L∞ ≤ C‖c‖
1

2

H2‖c‖
1

2

H1 ≤ C(1 + ‖∆c‖
1

2 ), (4.3)

‖∇c‖L∞ ≤ C‖∇c‖
1

2

H2‖∇c‖
1

2

H1 ≤ C(1 + ‖∆c‖ + ‖∇∆c‖)
1

2 (1 + ‖∆c‖)
1

2 .(4.4)
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On the other hand, since ‖∆c‖ = ‖∇c‖
1

2 ‖∇∆c‖
1

2 , by Young’s inequality and

the uniform H1 estimate, we have

‖∇∆c‖ ≤
1

C
(‖∇µ‖ + ‖f ′′(c)∇c‖) ≤

1

C
‖∇µ‖ + C(‖c‖2

L∞ + 1)‖∇c‖

≤
1

C
‖∇µ‖ + C(‖∆c‖ + 1) ≤

1

C
‖∇µ‖ +

1

2
‖∇∆c‖ + C. (4.5)

Keeping the above estimates in mind, we infer from (3.3) that

‖u‖ ≤ C(‖∇p‖ + ‖µ(c)∇c‖) ≤ C(‖µ‖ + ‖∆c‖ + ‖c‖3
L6 + ‖c‖)‖∇c‖L∞

≤ C(1 + ‖∆c‖)‖∇c‖L∞ , (4.6)

‖∆f ′(c)‖ ≤ C(1 + ‖c‖2
L∞)‖c‖H2 + C(1 + ‖c‖L6)‖∇c‖2

L6 ≤ C(1 + ‖∆c‖2),(4.7)

‖∆c‖ ≤ C‖∇µ‖
1

2 + C. (4.8)

Assume the diffusion Péclet number Pe satisfy 0 < Pe ≤ 1. We re-estimate

the right-hand side of (3.6).

I1 ≤ C(1 + ‖∆c‖)2(1 + ‖∆c‖ + ‖∇∆c‖)‖∆2c‖

≤ C(1 + ‖∆c‖3 + ‖∆c‖
5

2 ‖∆2c‖
1

2 + ‖∆c‖
1

2 ‖∆2c‖
1

2 )‖∆2c‖

≤
C

4Pe
‖∆2c‖2 +

1

4

(
C

Pe

) 1

2

‖∆c‖2‖∆2c‖2 + C

[(
C

Pe

)− 1

2

+

(
C

Pe

)− 3

2

]

‖∆c‖4

+CPe(1 + ‖∆c‖2)

≤
C

4Pe
‖∆2c‖2 +

(
C

Pe

) 1

2

‖∆c‖2‖∆2c‖2 + C(1 + ‖∇µ‖2).

I2 ≤
C

4Pe
‖∆2c‖2 + C

Pe

C
‖∆f ′(c)‖2 ≤

C

4Pe
‖∆2c‖2 + CPe(1 + ‖∆c‖4)

≤
C

4Pe
‖∆2c‖2 + C(1 + ‖∇µ‖2).

which implies that

d

dt
‖∆c‖2 +

[
C

Pe
−

1

2

(
C

Pe

) 1

2

‖∆c‖2

]
‖∆2c‖2 ≤ M1(1 + ‖∇µ‖2). (4.9) dDc3

It follows from (2.11) that for any t ≥ 0,

∫ t+1

t
‖∇µ(τ)‖2dτ ≤ PeE(0) ≤ E(0) := M2.
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By the Poincaré inequality, we have

‖∆c‖ ≤
1

C
(‖µ‖+‖f ′(c)‖) ≤ C‖∇µ‖+C

∣∣∣∣
∫

T3

µdx

∣∣∣∣+
1

C
‖f ′(c)‖ ≤ M3‖∇µ‖+M4,

which implies
∫ t+1

t
‖∆c(τ)‖2dτ ≤ 2M2

4 + 2M2
3 M2 := M5, ∀t ≥ 0. (4.10) inDc

We note that M1, ...,M5 are positive constants independent of Pe. Finally,

we assume that Pe satisfies the following relation

0 < Pe ≤ min

{
1,

C

‖∆c0‖4 + M2
1 (1 + M2)2 + 4M2

5

}
. (4.11) Pe

Once can check that C

Pe
−
(

C

Pe

) 1

2 ‖∆c0‖
2 > 0, which implies there exists a

T0 > 0 such that for t ∈ [0, T0],

C

Pe
−

(
C

Pe

) 1

2

‖∆c(t)‖2 ≥ 0. (4.12) ddb

As a result, on [0, T0], we infer from (4.9) that

d

dt
‖∆c‖2 +

1

2

C

Pe
‖∆2c‖2 ≤ M1(1 + ‖∇µ‖2). (4.13) dDc3a

Let T = supT0. First, we show that T ≥ 1. If this is not true, it follows

from the above inequality that

‖∆c(T )‖2 ≤ ‖∆c0‖
2 + M1

∫ T

0
(1 + ‖∇µ(t)‖2)dt ≤ ‖∆c0‖

2 + M1(1 + M2).

Thus, we have

C

Pe
−

(
C

Pe

) 1

2

‖∆c(T )‖2 > 0, (4.14) gg

which contradicts the definition of T . Besides, if T < +∞, then it follows

from (4.10) that there exists t∗ ∈ [T − 1
2 , T ] such that ‖∆c(t∗)‖2 ≤ 2M5.

Then we have

‖∆c(T )‖2 ≤ ‖∆c(t∗)‖2 + M1

∫ T

t∗
(1 + ‖∇µ(t)‖2)dt ≤ 2M5 + M1(1 + M2),

which again yields (4.14). Summing up, we can conclude that for all t ≥ 0,

(4.12) holds, namely, the H2-norm of c is uniformly bounded in time. Then

integrating (4.13) with respect to time we obtain (4.2).
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Once we obtained the uniform estimate of ‖c‖H2 , in analogy to Lemma

3.2, we are able to obtain uniform estimates on Hs-norms and prove the

existence of global in time strong solution.

chs3d Theorem 4.1. Let d = 3. For any c0(x) ∈ Hs(Td) for s > 5
2 , if the assump-

tion of Lemma 4.1 are satisfied, system (1.1)–(1.4) admits a unique global

solutions. For s ∈ (2k, 2k + 2] (k ∈ N), the following estimates hold for :

‖c(t, ·)‖Hs ≤ C, ∀t ≥ k, (4.15)
∫ t+1

t
‖c(τ, ·)‖2

Hs+2dτ ≤ C, ∀t ≥ k, (4.16)

where C is a constant only depending on ‖c0‖H2 and possibly on the param-

eters Pe,M,C, η. If c0 ∈ Hs, then the above estimates hold for t ≥ 0 with

constant C depending on ‖c0‖Hs instead of ‖c0‖H2 .

Proof. We remark that (3.15) still holds with a different G such that

G(t) = F(‖c‖L∞)(1 + ‖∇c‖L∞)2
(
‖∇c‖L∞ + ‖c‖

1

2

H3

)2

(1 + ‖c‖H2)2[2s]+2,

and F is a certain increasing function on R
+. Then it follows from (4.3),

(4.4), the uniform estimates (4.1) and (2.9) that for all t ≥ 0,
∫ t+1
t G(τ)dτ ≤

C(‖c‖H2)
∫ t+1
t (1 + ‖c(τ)‖2

H3)dτ ≤ C, where C is a constant only depending

on ‖c0‖H2 , and possibly on parameters Pe,M,C, η. using Lemma 4.1, we

can prove our conclusion by the same iteration argument as in Proposition

3.2.

The next result is an alternative provided that the gradient of the chem-

ical potential is bounded initially: either we have a global in time classical

solution, or the energy can be decreased by a certain fixed amount along the

trajectory. This result further lead to the eventual regularity result.

sm Theorem 4.2. Suppose d = 3, c0 ∈ H3. For any R ∈ (0,∞), whenever

‖∇µ(0)‖2 ≤ R, there is a small constant ε0 ∈ (0, 1) depending on R and

coefficients of the system such that either (i) Problem (1.1)–(1.4) has a unique

global classical solution (c, u), or (ii) there is a T∗ ∈ (0,+∞) such that

E(c(T∗)) < E(c0) − ε0.
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Proof. The key step is to establish the following higher-order energy inequal-

ity.

Lemma 4.2. Let c be the classical solution to the system (1.1)-(1.4), then

there holds

d

dt
‖∇µ‖2 +

C

Pe
‖∇∆µ‖2 ≤ K(1 + ‖∇µ‖6), (4.17)

where K is a constant only depending on ‖c0‖H1 and possibly on parameters

Pe,M,C, η̄, η.

Proof. We revisit the equality (3.20). By the Agmon inequality and (2.8),

we have

‖∆c‖L∞ ≤ C‖∆c‖
1

2

H1‖∆c‖
1

2

H2 ≤ C(1+‖∆c‖+‖∇∆c‖+‖∆2c‖)
1

2 (1+‖∆c‖+‖∇∆c‖)
1

2 .

Besides, it follows from the Sobolev embedding theorem and (2.8) that

‖∆2c‖ ≤
1

C
(‖∆µ‖ + ‖∆f ′(c)‖) ≤

1

C
‖∆µ‖ + C(1 + ‖∆c‖2)

≤
1

C
‖∇∆µ‖

1

2 ‖∇µ‖
1

2 + C(1 + ‖∇µ‖). (4.18)

By equation (1.1), assumption (A1) and we have

‖∇u‖ ≤

∥∥∥∥
η′(c)

η(c)

∥∥∥∥
L∞

‖∇c‖L∞‖u‖ +
1

12

∥∥∥∥
1

η(c)

∥∥∥∥
L∞

‖∇p‖H1

+
1

12M

∥∥∥∥
1

η(c)

∥∥∥∥
L∞

(‖∇µ‖‖∇c‖L∞ + ‖µ‖L6‖c‖W 2,3)

≤ C‖∇c‖L∞‖u‖ + C‖∇p‖H1 + C(‖∇µ‖‖∇c‖L∞ + ‖µ‖L6‖c‖W 2,3)

:= J1 + J2 + J3. (4.19)

By (4.4)-(4.6), we have

J1 ≤ C(1 + ‖∆c‖ + ‖∇∆c‖)(1 + ‖∆c‖)2 ≤ C(1 + ‖∇µ‖2)

J3 ≤ C‖∇µ‖(1 + ‖∇µ‖) + C(1 + ‖∇µ‖)(‖∇∆c‖
1

2 ‖∆c‖
1

2 + ‖∆c‖ + 1)

≤ C(1 + ‖∇µ‖2). (4.20)

Since the function F in Lemma 3.1 is not given in an explicit form and at

this stage we are not able to bound ‖c‖L∞ , we use a direct way to estimate
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J2. Using the periodic boundary condition, we have ‖∇p‖2
H1 = ‖∇∇p‖2 +

‖∇p‖2 = ‖∆p‖2 + ‖∇p‖2. Then using the equation (3.1), (A1), (4.6) and

(4.20), we obtain

J2 ≤ C‖∆p‖ + C‖∇p‖

≤ Cη̄

[∥∥∥∥∇
(

1

η(c)

)
· ∇p

∥∥∥∥+

∥∥∥∥div

(
1

Mη(c)
µ(c)∇c

)∥∥∥∥

]
+ C‖∇p‖

≤ C(‖∇c‖L∞ + 1)‖∇p‖ + C‖µ‖L6‖c‖W 2,3 + C‖∇µ‖‖∇c‖L∞

≤ C(1 + ‖∇µ‖2). (4.21)

Therefore, we have

‖∇u‖ ≤ C(1 + ‖∇µ‖2). (4.22)

Now we are able to re-estimate the terms I3, ..., I5 on the right-hand side of

(3.20).

I3 ≤ C‖∇u‖‖∇c‖L∞‖∇∆µ‖ + C‖u‖‖∆c‖L∞‖∇∆µ‖

≤
C

12Pe
‖∇∆µ‖2 + C‖∇u‖2‖∇c‖2

L∞ + C‖u‖2‖∆c‖2
L∞

≤
C

12Pe
‖∇∆µ‖2 + C(1 + ‖∇µ‖2)2(1 + ‖∇µ‖)2

+C(1 + ‖∇µ‖
1

2 )2(1 + ‖∇µ‖)2(1 + ‖∇µ‖ + ‖∇∆µ‖
1

2 ‖∇µ‖
1

2 )(1 + ‖∇µ‖)

≤
C

6Pe
‖∇∆µ‖2 + C(1 + ‖∇µ‖6). (4.23)

I4 ≤ C(1 + ‖c‖2
L∞)‖u‖‖∇c‖L∞‖∆µ‖ ≤ C(1 + ‖∆c‖)3(1 + ‖∆c‖ + ‖∇∆c‖)‖∇∆µ‖

1

2 ‖∇µ‖
1

2

≤ C(1 + ‖∇µ‖3)‖∇∆µ‖
1

2 ≤
C

6Pe
‖∇∆µ‖2 + C(1 + ‖∇µ‖4), (4.24)

I5 ≤ C(1 + ‖c‖2
L∞)‖∆µ‖2 ≤ C(1 + ‖∇µ‖

1

2 )‖∇∆µ‖‖∇µ‖

≤
C

6Pe
‖∇∆µ‖2 + C(1 + ‖∇µ‖3). (4.25)

Inserting (4.23)-(4.25) into (3.20) and using the Young’s inequality we can

see that (4.17) holds.

Now we turn to the proof of Theorem 4.2. The proof follows from the

idea in [15] and can be performed as in [24, Theorem 4.3]. For the sake of
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convenience, we sketch it here. Comparing (4.17), we consider the following

ODE problem:
d

dt
Y (t) = K(1 + Y (t)3), Y (0) = R.

We denote by I = [0, Tmax) the maximum existence interval of Y (t) such

that limt→T−

max
Y (t) = +∞. Take t0 = 1

2Tmax(R,K) > 0 and ε0 = Rt0
2Pe

. We

can see that ‖∇µ(t)‖ is uniformly bounded on [0, t0] by a constant depending

on R,K, t0. If (ii) is not true, we have E(c(t)) ≥ E(c0) − ε0, for all t ≥ 0.

Then from the basic energy law (2.7), there exists a t∗ ∈ [ t02 , t0] such that

‖∇µ(t∗)‖
2 ≤ 2Peε0

t0
= R. Taking t∗ as the initial time, we infer from the

above argument that ‖∇µ(t)‖ is bounded at least on [0, 3t0
2 ] ⊂ [0, t∗ + t0].

Moreover, its bound remains the same as that on [0, t0]. By iteration, we can

show that ‖∇µ(t)‖2 is uniformly bounded for t ≥ 0. Then our conclusion

follows from a similar argument as in Theorem 4.1.

A direct consequence of the above result is the eventually regularity of

weak solutions:

Corollary 4.1. Let d = 3 and (c, u) be a weak solution to problem (1.1)-

(1.4) on [0,+∞). Then there is some T ∗ > 0 such that (c, u) is regular after

T ∗.

Proof. Let R = 1 in the proof of Theorem 4.2. Then we can fix t0 =
1
2Tmax(1,K) > 0 and ε0 = t0

2 . There exists t̄(ε0) ≥ 1 such that
∫ +∞
t̄ ‖∇µ‖2dt ≤

ε0. Hence, there exists T ∗ ≥ t̄ that ‖∇µ(T ∗)‖2 ≤ 1 and E(c(t)) − E(c0) ≥

−
∫ +∞
T ∗

‖∇µ‖2dt ≥ −ε0 for t ≥ T ∗. Then we can apply Theorem 4.2.

The last result we present is global existence of classical solution for

initial data close to local minimizer of the energy.

3dlom Theorem 4.3. Suppose d = 3. Let c∗ ∈ H1(T3) be a local minimizer of

E(c) in the sense that there exists a δ > 0 such that E(c∗) ≤ E(c) for all

c ∈ H1(T3) satisfying
∫

T3 cdx =
∫

T3 c∗dx and ‖c − c∗‖H1 < δ. Then there

exists a constant σ ∈ (0, 1] which may depend on c∗, δ and coefficients of

the system such that for any c0 ∈ H3 satisfying
∫

T3 c0dx =
∫

T3 c∗dx and

‖c0 − c∗‖H3 ≤ 1, and ‖c0 − c∗‖H2 ≤ σ, the problem (1.1)–(1.4) must admit

a unique global classical solution.

30



Proof. It is easy to see that Proposition 3.5 also holds in 3D case. Since

c∗ is a local minimizer of E, then we can see that c∗ is smooth and its

Hs-norms only depend on
∫

T3 c∗dx and C. Thus ‖c0‖H3 ≤ ‖c∗‖H3 + 1

only depends on c∗. In the subsequent proof, we denote by Ci, i = 1, 2, ...

constants that only depend on c∗ and coefficients of the problem. It follows

from Lemma 2.1 that ‖c(t)‖H1 ≤ C1 for t ≥ 0. By Sobolev embedding,

E(c0) − E(c(t)) ≤ C2‖c0 − c(t)‖H1 for t ≥ 0 with C2 depending only on c∗.

Since ‖∇µ(0)‖2 ≤ C(‖c0‖H3) := R, then as in the proof of Theorem 4.2,

we can subsequently fix t0 and ε0. All those three quantities depend only

on c∗ and coefficients of the problem. Furthermore, we see that on [0, t0],

‖∇µ(t)‖ is uniformly bounded by a constant only depending on R,K, t0 (thus

on c∗). Since c∗ is a critical point of E, Lemma 3.4 holds with c∞ replaced

by c∗ in (3.36) and the constants β, θ are determined by c∗. Set

̟ = min

{
1

2
β, δ,

2ε0

3C2

}
.

For σ ≤ 1
2̟, let tσ > 0 be the smallest and finite time for which ‖c(tσ) −

c∗‖H2 ≥ ̟. We first show that there exists σ such that tσ > t0 by a

contradiction argument. Applying Lemma 3.4, similar to (3.38), we infer

from (3.35) that the following inequality holds on the interval [0, tσ ] ⊂ [0, t0],

−
d

dt
(E(c(t)) − E(c∗))θ ≥ C3(‖u‖ + ‖∇µ‖) ≥ C4‖ct‖H−1 , (4.26)

Therefore, we have

∫ tσ

0
‖ct‖H−1dt ≤ C−1

4 (E(c0) − E(c∗))θ ≤ C5‖c0 − c∗‖θ
H2 , (4.27)

which implies that

‖c(tσ) − c∗‖H2

≤ ‖c0 − c∗‖H2 + ‖c(tσ) − c0‖H2 ≤ ‖c0 − c∗‖H2 + C6‖c(tσ) − c0‖
3

4

H3‖c(tσ) − c0‖
1

4

H−1

≤ ‖c0 − c∗‖H2 + C7

(∫ tσ

0
‖ct‖H−1dt

) 1

4

≤ ‖c0 − c∗‖H2 + C8‖c0 − c∗‖
θ
4

H2 . (4.28)
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Choosing

σ = min

{
1

2
̟,

(
̟

4C8

) 4

θ

}
,

we have ‖c(tσ) − c∗‖H2 ≤ 3
4̟ < ̟, which yields a contradiction with the

definition of tσ. Hence, for such σ, we have ‖c(t)− c∗‖H2 ≤ ̟ for t ∈ [0, t0],

which implies that ‖c(t)− c0‖H2 ≤ ‖c(t)− c∗‖H2 + ‖c0 − c∗‖H2 ≤ 3
2̟ ≤ ε0

C2
.

As a consequence, E(c(t)) − E(c0) ≥ −ε0 on [0, t0]. Then we can find

t1 ∈ [12t0, t0] such that ‖∇µ(t1)‖
2 ≤ R. Starting from t1, we can actually

extend our classical solution c to interval [0, t1 + t0] with the same estimates

as on [0, t0]. Then repeating the above argument, we can show that E(c(t))−

E(c0) ≥ −ε0 on [0, t1 + t0]. By iteration, we have E(c(t))−E(c0) ≥ −ε0 for

t ≥ 0. Our conclusion follows from Theorem 4.2.

Remark 4.1. By the eventual regularity of the weak solution, we only have to

consider the long-time behavior of global classical solution. For the classical

solution obtained in the above cases, one can argue as in Section 3 to obtain

the same result like in 2D. Besides, for the case that the initial datum is near

a local minimizer c∗ of E. We can easily see that the asymptotic limit point

c∞ has the property that E(c∞) = E(c∗). From the proof of Theorem 4.3,

we can see that ‖c∞ − c∗‖ < β and then by Lemma (3.4) (with c := c∞ and

c∞ := c∗ in (3.36)), it holds |E(c∞)−E(c∗)|1−θ ≤ ‖P (−∆c∞+f(c∞))‖ = 0.

Thus, c∞ is also a local minimizer of E. If c∗ is an isolated minimizer, we

have c∞ = c∗ and our result provide the stability of c∗ in this case.
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