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Abstract

Spectral transverse instabilities of one-dimensional solitary wave solutions to the two-dimensional nonlinear Schrödinger
(NLS) equation with fourth-order dispersion subject to higher-dimensional perturbations are studied. A linear boundary
value problem governing the evolution of the transverse perturbations is derived. The eigenvalues of the perturbations
are numerically computed using Fourier and finite difference differentiation matrices. It is found that for both signs of
the higher-order dispersion coefficient there exists a finite band of unstable transverse modes. In the long wavelength
limit we derive an asymptotic formula for the perturbation growth rate that agrees well with the numerical findings.
Using a variational formulation based on Lagrangian model reduction, an approximate expression for the perturbation
eigenvalues is obtained and its validity is compared with both the asymptotic and numerical results. The time dynamics of
a one-dimensional soliton stripe in the presence of a transverse perturbation is studied using direct numerical simulations.
Numerical nonlinear stability analysis is also addressed.
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1. Introduction

Solitons, or solitary waves, are self-trapped nonlinear
modes that exist in many branches of science such as op-
tics [1, 2, 3, 4, 5], fluid mechanics [6], plasmas [7], ultra-
cold gases [8] biology and chemistry [9, 10]. Among the
most intriguing and physically relevant properties asso-
ciated with these solitary waves is the development of
symmetry-breaking instabilities that often lead to the gen-
eration of complex nonlinear coherent structures [11].

Modulational instability (MI) is an important example
of a symmetry-breaking instability where a constant (in
space) amplitude and time-harmonic solution to the un-
derlying governing equation of motion breaks up due to
the exponential growth of small modulated perturbations
under the combined effects of dispersion and nonlinear-
ity. It was first identified in fluid mechanics [12] and
plasma physics [13] and subsequently reported in many
other areas of physics [14, 15], particularly in nonlinear
optics [16, 17, 18, 19, 20, 21]. Very recently [24], mod-
ulational instability of constant amplitude waves for the
PT-symmetric NLS equation [22, 23] has also been stud-
ied.

Another physically relevant modulational instability
process is the so-called transverse instability (TI) (see re-
views [25, 26, 27]). Contrary to the “conventional” MI
(where the base state is constant in all space dimen-
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sions), TI describes the break up of a line soliton (a two-
dimensional nonlinear mode localized in one space dimen-
sion and uniform in the other) due to the exponential
growth of unstable perturbations in the transverse direc-
tion. Mathematically speaking, it was first discovered
by Zakharov and Rubenchik [28] for the attractive two-
dimensional nonlinear Schrödinger equation. They derived
an asymptotic expression for the perturbation eigenvalue
valid in the long wavelength limit and found that one-
dimensional line soliton solutions are transversally unsta-
ble. The long time dynamics of the soliton evolution under
transverse perturbations is the formation of a train of two-
dimensional localized filaments. A similar situation holds
for the two-dimensional repulsive (self-defocusing) NLS
equation: a dark soliton stripe becomes unstable against
random transverse perturbations and disintegrates into a
sequence of vortices (snake-type instability) [29, 30, 31].
Transverse instabilities of vector solitons have also been
studied theoretically [33, 34, 35]. Experimental observa-
tion of TI has been reported in the literature for both the
scalar and vector cases [39, 40]. We point out that TI has
also been studied in other settings [36], most notably for
the hyperbolic NLS equation [37, 38].

Most of the mathematical models used to study MI and
TI processes are based on nonlinear, dispersive and conser-
vative evolution equations with the nonlinear Schrödinger
equation being a prototypical example [6]. However,
higher-order dispersion terms become important in cer-
tain special regimes. Specifically, fourth-order dispersion
has been demonstrated to play an important role in fiber
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optics [41, 42]. Additionally, modulational instability in
NLS-type models with high-order dispersion have been ex-
tensively investigated [43, 44, 45, 46, 47, 48].

In this paper, we study spectral transverse instabili-
ties of one-dimensional localized solitary waves subject
to two-dimensional perturbations. The model equation
considered is based on the two-dimensional nonlinear
Schrödinger equation in the presence of a higher-order dis-
persion

iφt +
1

2
∆φ− β∆2φ+ γ |φ|2 φ = 0 , (1)

where φ is a complex-valued envelope function, β is a real
dispersion coefficient, γ = ±1, ∆ is the two-dimensional
Laplacian describing dispersion in the (x, y) plane and ∆2

is the so-called bi-Laplacian. When β = 0, Eq. (1) success-
fully models several physical phenomena related to optics
[2, 6], Bose-Einstein condensates [49], and fluid mechanics
[50]. For nonzero β, Eq. (1) can be viewed as a special
case of the more general complex Swift-Hohenberg equa-
tion derived in [51] as a model of optical wave propagation
in a cavity near the onset of lasing. A linear evolution
equation for the transverse perturbation is obtained. Us-
ing separation of variables, we find an eigenvalue system
whose spectrum is numerically computed with the help of
differentiation matrices. It is found that when β is posi-
tive there exists a finite band of unstable transverse modes
and the soliton stripe is unstable against perturbations
with small wavenumbers. This long wavelength instabil-
ity seems to disappear when the higher-order dispersion
coefficient β is negative for solitons with small amplitude.
In the long wavelength limit we derive an asymptotic for-
mula for the perturbation growth rate that agrees well with
the numerical findings. This perturbative result general-
izes the formula obtained by Zakharov and Rubenchik [28]
for the “classical” two-dimensional nonlinear Schrödinger
equation (β = 0). Based on a variational approach, an
approximate expression for the perturbation eigenvalues
is also obtained and its validity is compared with the
asymptotics as well as the numerical results. The time
dynamics of the soliton stripe superimposed with a trans-
verse perturbation is investigated by numerically solving
the Cauchy problem associated with Eq. (1). Finally, nu-
merical nonlinear stability results are also presented.

The outline of the paper is as follows. In section 2 we
identify families of one-dimensional line soliton solutions
followed by (Sec. 3) a thorough analysis of their linear
stability. In Secs. 4 and 5 we report on analytical results
for the linear stability analysis. Comparison with direct
simulations is presented in section 6. We conclude the
discussion in section 7.

2. Line (stripe) solitons

We start the discussion by considering a family of one-
dimensional soliton solutions to Eq. (1) that are indepen-

dent of the transverse coordinate y

φ(x, y, t) = ψ(x, µ)eiµt , (2)

which satisfy the nonlinear boundary value problem

1

2
∂2
xψ − β∂4

xψ + γ |ψ|2 ψ = µψ . (3)

Equation (3) is supplemented with the boundary condi-
tions: ψ tends to zero sufficiently fast as |x| tends to infin-
ity. The eigenvalue µ is referred to as the soliton propa-
gation constant and its sign is adjusted depending on the
signs of β and γ. We note that Eq. (3) in the presence
of an external periodic potential has been studied in both
one and two spatial dimensions [52, 53]. To determine the
eigenfunction and eigenvalue pair (ψ, µ) we numerically in-
tegrate Eq. (3) using the spectral renormalization method
[54] (see details in Appendix A). It is worth mentioning
that a special solution for Eq. (3) is known to exist for
β > 0, γ = +1 and is given by [55]

ψ(x) =

√
3

40β
sech2

(
x√
40β

)
, µ =

1

25β
. (4)

In Figs. 1 and 2 we show typical examples of nonlinear
mode profiles (solutions of Eq. (3)) for both positive and
negative values of β, γ and µ. First, we address the posi-
tive β case of which three different solutions corresponding
to different soliton eigenvalues µ are depicted in Fig. 1. It
is seen that the soliton amplitude becomes larger as µ in-
creases, and as a result the soliton profile becomes more
localized. The soliton shown in Fig. 1(a) corresponds to
analytical solution (4) for β = 1/10. It is interesting to
note that the soliton shapes given in Figs. 1(b) and 1(c)
display a weak oscillatory tail and in some space domains
become negative. This is contrary to the analytical solu-
tion in Eq. (4) which is postive-definite and monotonically
decaying as x approaches ±∞. We can understand this
oscillatory feature by examining the large x asymptotics
of Eq. (3) given by

1

2
∂2
xψ − β∂4

xψ ≈ µψ . (5)

Making the ansatz ψ(x) ∼ exp(sx) we find nontrivial so-
lutions for values of the exponent s satisfying

s = ±
(

1

4β

(
1±

√
1− 16βµ

))1/2

. (6)

It is evident that the exponent s is real when β = 1/10
and µ = 2/5, whereas it becomes complex for µ = 2 and 4.
This explains the oscillatory behavior of the soliton tails.

Next, consider the negative β case which appears to be
profoundly different. As noted in [56] and [57] there are
no localized solutions to Eq. (3) for positive γ and µ. Thus
we limit ourselves to the case where γ = −1 and negative
µ values. With this in mind, we show in Fig. 2 typical
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Figure 1: Line soliton solutions to Eq. (3) for β = 0.1, γ = +1 and
soliton eigenvalues µ = 0.4(a), 2(b) and 4(c).

solutions for various soliton eigenvalues. As one notices,
the soliton profiles show a drastic difference in comparison
to their β > 0 counterparts in the sense that they become
highly oscillatory. Having found nonlinear modes for var-
ious sets of model parameters we turn our attention next
to the question of linear stability analysis.

−10 0 10
−0.5

0

0.5

1

1.5

x

ψ(x)

−10 0 10
−0.5

0

0.5

1

1.5

2

2.5

x
−10 0 10

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x

(a) (b) (c)

Figure 2: Same as in Fig. 1, but for parameters β = −0.1, γ = −1
and soliton eigenvalues µ = −1.5(a), −4(b) and −8(c).

3. Linear stability analysis

To study the linear stability of the line soliton solu-
tions found above, we write a weakly perturbed solution
of Eq. (1) in the form

φ(x, y, t) = [ψ(x) + εη(x, y, t)] eiµt , (7)

where |ε| � 1 is a dimensionless parameter used to mea-
sure the strength of the perturbation and η is a complex
transverse perturbation that depends on x, y and t. Note
that we are considering here the linear stability of a real-
valued wave function ψ. Substituting the ansatz (7) into
Eq. (1) we find to order ε

iηt − µη +
1

2
∆η − β∆2η + γψ2 (2η + η∗) = 0 . (8)

Equation (8) is a linear constant coefficient in y and t (and
variable in x) PDE that governs the evolution of the per-
turbation η subject to the following boundary conditions:
η → 0 as |x| → ∞ sufficiently fast and periodic in y. With
this in mind, we decompose the perturbation in terms of
its Fourier modes and assume that the time evolution is
exponential

η(x, y, t) = fq(x)ei(qy+ω(q)t) + g∗q (x)e−i(qy+ω∗(q)t) , (9)

where fq, gq are the perturbation Fourier modes assumed
to be localized in x with corresponding wavenumber q and
complex frequency ω(q) that measures the perturbation
growth rate. Substituting the anstatz (9) into Eq. (8)
and collecting terms proportional to exp(i(qy + ωt)) and
exp(−i(qy + ω∗t)) independently results in the following
non-Hermitian eigenvalue system(

0 M12

M21 0

)(
Fq
Gq

)
= ω

(
Fq
Gq

)
, (10)

where, by definition, Fq = fq + gq, Gq = fq − gq and the
off-diagonal elements are

M21 = L1 − q2/2− βq4 + 2βq2∂2
x , (11)

M12 = L2 − q2/2− βq4 + 2βq2∂2
x , (12)

for

L1 = −µ+ ∂2
x/2− β∂4

x + 3γψ2 , (13)

L2 = −µ+ ∂2
x/2− β∂4

x + γψ2 . (14)

Note that the linear operators L1 and L2 are self-adjoint
with respect to the standard L2(R) real-valued inner prod-
uct

〈u1, u2〉L2(R) =

∫
R
u1u2 dx , (15)

which induces the norm

||u||2 =

(∫
R
u2(x) dx

)1/2

. (16)

It is obvious from Eq. (9) that for a fixed wavenumber
q, the eigenvalue ω = ω(q) with nonzero imaginary com-
ponent will grow exponentially in time, hence the pertur-
bation η becomes unbounded. In this case, we say that
the nonlinear mode φ(x, y, t) = ψ(x, µ) exp(iµt) is linearly
unstable to transversally modulated perturbations. To de-
termine if such modes are indeed linearly stable or not we
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solve eigenvalue problem (10) and compute the spectrum
ω as a function of the transverse wavenumber q. This
is accomplished by numerically approximating the second
and fourth-order derivatives ∂2

x and ∂4
x using, for exam-

ple, spectral or finite difference differentiation matrices on
a large computational domain [58]. The imaginary part
of the eigenvalue ω(q) (corresponding to TI) is shown in
Fig. 3 for β = 1/10, γ = +1 and various values of the trans-
verse wavenumber q. The solid, dashed and dashed-dotted
curves correspond to different soliton eigenvalues µ whose
shapes are depicted in Fig. 1. The numerical results reveal
the existence of a finite band I = (0, qcut(µ, β)) of Fourier
modes that grow exponentially in time and force the soli-
ton to disintegrate (see Sec. 6 for detailed numerical simu-
lations). The numerical findings suggest that the measure
of the interval I is a monotonic function of µ. Importantly,
the instability develops for any small wavenumber q and
attains its maximum value Im ωmax ≡ maxq Im (ω(q)) at
some wavenumber qmax. We note that large soliton ampli-
tudes experience the fastest instability development. The
linear stability analysis suggests that the line soliton is sta-
ble against short wavelength transverse perturbations (see
Sec. 6).
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Figure 3: The imaginary part of the spectrum numerically generated
by solving eigenvalue problem (10) with parameters β = 0.1, γ = +1
and several eigenvalues µ. The solid, dashed, and dashed-dotted
curves correspond to the three solutions shown in Fig. 1.

In order to understand the role of the biharmonic dis-
persion coefficient β in the development of TI we have re-
peated the above numerical experiments for larger values
of β. The main characteristics of the instability pattern
remain unchanged with the slight exception that the un-
stable band measure shrinks and the maximum unstable
eigenvalue decreases (see Fig. 4). Hence a sizable insta-
bility pattern is observed on longer time scales. As an
example, for fixed µ = 4, γ = +1 we find for β = 0.1 that
qcut ≈ 2.65 and Im ωmax ≈ 5.04 at qmax ≈ 2.06. Compare
this with β = 0.25 where qcut ≈ 2.17 and Im ωmax ≈ 4.87

is located at qmax ≈ 1.71. This result is somehow not so
surprising since for positive β the operator ∆− β∆2 pro-
duces larger effective dispersion than the Laplacian alone,
hence it tends to weaken, but not eliminate, the instability.
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Figure 4: Numerically generated transverse instability growth rates
for β = 0.25, γ = +1 and various soliton eigenvalues µ.

Next we proceed with the negative β case. As be-
fore, system (10) is solved numerically for the perturbation
eigenvalues ω(q) with negative values of γ and µ. In sharp
contrast to what we have so far observed, the unstable lin-
ear spectrum Im ω(q) with relatively small soliton eigen-
values |µ| are now compactly supported on the interval

Iq = (q
(1)
cut(β, µ), q

(2)
cut(β, µ)). Moreover, the linear stability

analysis predicts that long wavelength transverse pertur-
bations do not grow exponentially in time. The length
of this instability island Iq expands with increasing soli-
ton eigenvalue |µ|. The numerical results seem to suggest
that higher amplitude solitons are more susceptible to in-
stability against long wavelength perturbations. For fixed
nonlinearity coefficient γ and soliton eigenvalue µ, larger
|β| values have little effect on the overall nature of the
spectrum, as one sees in Fig. 6.

4. Asymptotic analysis: long wavelength limit

To support our numerical findings we resort in this sec-
tion to perturbation theory and derive an asymptotic for-
mula for the perturbation eigenvalues ω(q) valid in the
long wavelength limit, i.e. q → 0. We start by expanding
the perturbation eigenfunctions Fq and Gq as well as the
eigenvalues ω(q) in an asymptotic series for small q:

ω = qω1 + q2ω2 + · · · (17)

Fq(x) = F0(x) + qF1(x) + q2F2(x) + · · · (18)

Gq(x) = G0(x) + qG1(x) + q2G2(x) + · · · (19)
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Figure 5: Same as Fig. 3, but for β = −0.1, γ = −1 and a few
eigenvalues µ. The three curves correspond to the three solutions
shown in Fig. 2.

Substituting expansions (17)-(19) into boundary value
problem (10) and collecting terms at each order of q we
find

O(1) : L1F0 = 0 , L2G0 = 0 , (20)

O(q) : L1F1 = PF1 , L2G1 = PG1 , (21)

O(q2) : L1F2 = PF2 , L2G2 = PG2 , (22)

and in general for any order n ≥ 3

O(qn) : L1Fn = PFn , L2Gn = PGn , (23)

where the functions PFn and PGn depend on the previous
Fl and Gl for l = 0, . . . , n−1. As mentioned above, all the
eigenfunctions Fn and Gn are assumed to be smooth and
belong to the space of square integrable functions defined
on the whole real line. Our aim is to solve Eqns. (20)-
(22) successively. Since Eq. (1) admits gauge and space-
translation invariance symmetries it follows

L1 (∂xψ) = 0 , L2 (ψ) = 0 . (24)

Relation (24) combined with the asymptotic result in
Eq. (6) imply that the dimension of the kernel (in L2(R))
of Lj , j = 1, 2 is at most two. We have numerically
solved the eigenvalue problems L1v1 = λ1v1 and L2v2 =
λ2v2 by representing each derivative by its corresponding
finite-difference or spectral differentiation matrix with zero
Dirichlet boundary conditions on a sufficiently large spa-
tial domain and collocating the function ψ2(x) along the
matrix diagonal. Our numerical findings strongly indi-
cate that the only eigenfunctions of L1 and L2 that belong
to the L2(R) space, with corresponding zero eigenvalues,
are precisely those functions satisfying (24). With this at
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Figure 6: Imaginary part of the eigenvalue spectrum for system (10)
computed numerically with parameters β = −0.25, γ = −1 and sev-
eral eigenvalues µ.

hand, we shall therefore assume throughout the rest of this
paper that there exists {β0, µ0, γ0} for which the dimen-
sion of the kernel of Lj , j = 1, 2 is exactly one. Under
the above assumption, we write the homogenous solution
to Eq. (20) as F0 = C1∂xψ and G0 = C2ψ for nonzero
constants C1 and C2. At order q, we have PF1 = ω1G0

and PG1 = ω1F0. Differentiating Eq. (3) with respect
to µ we find F1 = C2ω1∂µψ. By the Fredhlom Alter-
native theorem, an L2(R) solution to L2G1 = PG1 ex-
ists and is given by G1 = C1ψ̃ such that L2ψ̃ = ω1∂xψ
(up to a homogenous solution). At order q2, we have
PF2 = C1ω1ψ̃ + C2ω2ψ + C1∂xψ/2 − 2βC1∂

2
x(∂xψ) and

PG2 = C2ω
2
1∂µψ + C1ω2∂xψ + C2ψ/2 − 2βC2∂

2
xψ. The

solvability condition

〈ψ,PG2 〉L2(R) = 0 , (25)

gives the following expression for the perturbation spec-
trum

ω = ±iqΩ1/2 +O(q2) , (26)

where

Ω =
4β ||∂xψ||22 + ||ψ||22

∂µ ||ψ||22
. (27)

Thus for positive β the numerator in Eq. (27) is positive-
definite, hence all solitary wave solutions to Eq. (3) sat-

isfying the condition ∂µ ||ψ||22 > 0 are unstable against
transverse perturbations with large wavelength and as a
result grow exponentially in time. On the other hand, for
negative β all transverse perturbations with wavenumbers
satisfying |q| � 1 remain bounded for short time scales if

||ψ||22 > −4β ||∂xψ||22 and ∂µ ||ψ||22 < 0.
To confirm result (26) we have compared it with the nu-

merically computed TI eigenvalues for β = 1/10, γ = +1
and various soliton eigenvalues. The quantity ∂µ||ψ||22 is
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Figure 7: The imaginary part of the TI spectrum computed from
Eq. (26) (circles) and by numerical solution of eigenvalue problem
(10) (solid line) for β = 0.1 and γ = +1. The panels correspond
to solution eigenvalues µ = 0.4(a), 2(b) and 4(c). The approximate
slopes Ω1/2 are 0.866(a), 1.992(b) and 2.931(c).

computed using a centered finite differences stencil. A
summary of the findings are shown in Fig. 7. For small
wavenumbers q, Eq. (26) agrees well with the numerically
generated perturbation eigenvalues (see Table 1 in Sec. 5).

For the parameter regime considered here, ∂µ ||ψ||22 is al-
ways positive. Similar tests have been performed for neg-
ative β values. In particular, for small soliton eigenvalues
|µ| we find that the term 4|β| ||∂xψ||22 is smaller than ||ψ||22
and ∂µ ||ψ||22 < 0, hence ω is real and the soliton is linearly
stable (see Fig. 8(a)). On the other hand, as |µ| increases

4|β| ||∂xψ||22 grows larger than ||ψ||22 and the perturbation
eigenvalues become purely complex (linearly unstable) for
small q (see Figs. 8(b) and 8(c)).

5. Variational formulation

The previous approaches to compute the transverse dis-
persion relation ω(q) were based on numerical integration
of boundary eigenvalue problem (10) as well as on the
asymptotic analysis valid for small wavenumbers. In this
section we take a different approach to compute and study
the development of the spectral instability using a varia-
tional formulation. The central idea behind the method
is to reformulate Eq. (1) in terms of its corresponding La-
grangian functional, then make a suitable solution ansatz
that depends on few degrees of freedom and obtain an ef-
fective Lagrangian by integrating over a reduced number
of degrees of freedom. By taking the variational deriva-
tive of the reduced Lagrangian, we obtain a coupled set
of PDEs that are later used to study perturbation theory.
We remark that this variational approach has been used to
obtain approximate analytical forms for solitons in various
settings [59, 60, 61].
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Figure 8: Same as Fig. 7, but for β = −0.1 and γ = −1. The panels
correspond to solution eigenvalues µ = −4(a), −8(b) and −12(c).
The approximate slopes Ω1/2 are 0(a), 0.962(b), and 1.984(c).

We begin by considering the Lagrangian functional

L =
1

2

∫∫∫
R2×[0,T ]

G dxdydt , (28)

G = i (φ∂tφ
∗ − φ∗∂tφ) + |∇φ|2 + 2β|∆φ|2 − γ|φ|4 , (29)

that using the Euler-Lagrange equations with the respect
to the solution φ(x, y, t) reproduces Eq. (1). Our strategy
for computing the transverse instability dispersion curves
is as follows. First, let ϕµ(x) be a smooth and real-valued
localized solution to Eq. (3) corresponding to eigenvalue µ.
Multiplying that equation by ϕµ(x) and integrating over
the whole real line gives

γ||ϕµ||44 = µ||ϕµ||22 +
1

2
||∂xϕµ||22 + β||∂2

xϕµ||22 , (30)

where we define the Lp(R) norm of ϕµ by

||ϕµ||p =

(∫
R

(ϕµ)
p
dx

)1/p

. (31)

We now make the ansatz solution to Eq. (1) that is a
one-dimensional soliton modulated in the transverse y-
direction i.e.

φA(x, y, t) = A(t, y)ϕµ(x)eiµt , (32)

where A is a complex-valued amplitude that depends on
y and t. This separation of variables approach, where the
trial function ϕµ(x) is kept exact, simplifies the calcula-
tions and allows one to relate back to the stability problem
by choosing the amplitude A to depend on t and y only.
Also, in the method proposed here, the solution ϕµ(x) is
either known analytically, as is the case in Eq. (4), or may
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be numerically generated. A more general ansatz φA that
includes more parameters (e.g. soliton width and phase)
is possible (see [62] for the classical NLS equation). This
could lead to better approximations for the perturbation
eigenvalue ω, however the analysis could become cumber-
some. The nice thing about our ansatz is that it simplifies
the calculations, captures the structure of the unstable
spectrum and agrees well with the previous approaches.

Substituting (32) into the Lagrangian (28) and integrat-
ing the x degree of freedom we obtain the effective La-
grangian

Leff (A,A∗) =
1

2

∫
R
G(φ, ∂tφ,∇φ,∆φ)

∣∣∣∣
φ=φA

dx , (33)

that after some calculations simplifies to

Leff(A,A∗) =
i

2
(A∂tA

∗ −A∗∂tA)E1 + µ|A|2E1 (34)

+
1

2
|A|2E2 +

1

2
|∂yA|2E1 + β|A|2E3

− β
(
A∗∂2

yA+A∂2
yA

∗)E2 + β|∂2
yA|2E1

− γ

2
|A|4E4 ,

where Ej , j = 1, 2, 3, 4 are positive constants that implic-
itly depend only on β, γ and µ

E1 =

∫
R
ϕ2
µ dx , (35)

E2 =

∫
R

(∂xϕµ)
2
dx , (36)

E3 =

∫
R

(
∂2
xϕµ

)2
dx , (37)

E4 =

∫
R
ϕ4
µ dx . (38)

To obtain the dynamical equation that governs the evolu-
tion of the amplitude A, we use the first variation principle
δL = 0 via the Euler-Lagrange equation

∂Leff

∂A∗ −
∂

∂t

∂Leff

∂(∂tA∗)
− ∂

∂y

∂Leff

∂(∂yA∗)
+

∂2

∂y2

∂Leff

∂(∂2
yA

∗)
= 0 .

(39)

A straightforward calculation gives

i∂tA−
(
µ+

E2

2E1
+ β

E3

E1

)
A+

(
1

2
+ 2β

E2

E1

)
∂2
yA (40)

− β∂4
yA+ γ

E4

E1
|A|2A = 0 .

With this result at hand, we next proceed with the ques-
tion of stability. Note that A = 1 is a fixed-point of
Eq. (40) which implies that ϕA is an exact solution to
Eq. (3). A small perturbation around the steady and ho-
mogenous state in the form

A(t, y) = 1 + εA1(t, y) + · · · , ε� 1 , (41)

can be interpreted as a perturbation of the soliton
ϕµ. Since, in this case, Eq. (32) reads φA(x, y, t) =
[ϕµ(x) + εA1(t, y)ϕµ(x) + · · · ] exp (iµt), A1ϕµ can be
thought of as transverse perturbation η. Substituting the
asymptotic expansion (41) into Eq. (40) one finds to lead-
ing order in ε

γE4 = µE1 +
1

2
E2 + βE3 , (42)

which is identical to Eq. (30). At order ε we find the
following linear evolution equation

i∂tA1+

(
1

2
+

2βE2

E1

)
∂2
yA1−β∂4

yA1+
γE4

E1
(A1 +A∗

1) = 0 .

(43)
Next we seek a plane wave solution to Eq. (43) with con-
stant (in t and y) amplitudes uq, vq, wavenumbers q ∈ R
and (in general) complex frequency ω that depends on q

A1(t, y) = uq e
i(qy+ωt) + v∗q e

−i(qy+ω∗t) , (44)

which upon substituting into Eq. (43) results in the non-
Hermitian eigenvalue problem(

0 W12

W21 0

)(
Uq
Vq

)
= ω

(
Uq
Vq

)
. (45)

Here we define Uq = uq − vq, Vq = uq + vq and

W12 =
2γE4

E1
−
(

1

2
+

2βE2

E1

)
q2 − βq4 , (46)

W21 = −
(

1

2
+

2βE2

E1

)
q2 − βq4 . (47)

The advantage of this variational approach over the one
presented in Sec. 3 is that eigenvalue system (45) is ex-
actly solvable, unlike the one given in Eq. (10) where only
numerical diagonalization and long wavelength perturba-
tion analysis is available. Solving for the eigenvalue ω gives
the dispersion relation

ω2 = q2

[(
1

2
+ 2βθ1

)
+ βq2

]
(48)

×
{(

1

2
+ 2βθ1

)
q2 + βq4 − 2γθ2

}
,

where θ1 ≡ E2/E1 and θ2 ≡ E4/E1 are positive constants.
Furthermore, by letting q1 = 1

2β + 2θ1 and K2 = 2γθ2
β for

β 6= 0 Eq. (48) is factored as

ω2 = β2q2
(
q2 + q1

) (
q2 − q2

2

) (
q2 + q2

3

)
. (49)

Here we define

q2
2 =
−q1 +

√
q2
1 + 4K2

2
, (50)

with q2
3 a positive quantity that depends on q1 and K2.

Since γβ > 0 (the only case considered here) it follows
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Figure 9: Instability growth rate obtained from Eq. (49) (dashed
line) for β = 0.1, γ = +1 and eigenvalues µ = 0.4(a), 2(b) and 4(c).
The solid line is the numerically computed eigenvalues from system
(10).

that K2 is positive. Thus the soliton strip ψ is trans-
versely unstable if ω2 < 0 and linearly stable otherwise.
When β is positive it follows that q1 > 0, in which case
q2
2 remain positive as well. This in turn implies the exis-

tence of a finite band of unstable Fourier modes (0, q2) for
which Im ω is nonzero. This result is consistent with the
numerical and perturbation findings obtained in Secs. 3
and 4. Figure 9 shows the instability growth rate Im ω
as a function of the unstable modes q for typical parame-
ters β = 1/10 and γ = +1. For comparison, we also show
the numerically computed eigenvalues obtained by solving
Eq. (10). As one can see, there is a relatively good qualita-
tive agreement between the variational and numerical ap-
proaches. Both methods predict nearly identical unstable
band measure, location of the most unstable mode qmax,
as well as maximum growth rates (with a slight difference
from the numerical value Im ωmax of about 8.7, 4.8, 3.3%
in Figs. 9 (a),(b),(c), respectively). In the long wavelength
limit (|q| � 1), the perturbation growth rate is given by

ω = ±iqΛ1/2 +O(q2) , (51)

where

Λ = γθ2 + 4γβθ1θ2 . (52)

Inspecting Eq. (52) the quantity Λ is positive, thus it leads
to exponentially in time growing perturbations. Further-
more, it remarkably agrees with the asymptotically com-
puted Ω given in Eq. (27). Table 1 shows typical values
for Ω1/2,Λ1/2 as well as the numerically generated slopes
found from system (10) for different soliton propagation
constants µ.

The situation for negative β proves to be much different
than what we have so far encountered. This is most evi-
dent from the fact that q1 can now be negative for some

µ Ω1/2 Λ1/2 Numerical
0.4 0.866 0.745 0.866
2 1.992 1.772 1.992
4 2.931 2.635 2.931

Table 1: Numerical values (rounded to the third digit) of Ω1/2 and
Λ1/2 obtained from formulas (27) and (52) for various soliton prop-
agation constants. For comparison, we also show the numerically
computed instability eigenvalues generated from eigenvalue problem
(10) for q = 0.01. Parameters are β = 0.1 and γ = +1.

β. In this case, this leads to the formation of an otherwise
nonexistent finite band of linearly stable modes followed
by a measurable interval of unstable Fourier wavenum-
bers. This can be explained by noticing that for q2 less
than −q1 > 0 the right-hand side of Eq. (49) is positive
and switches signs (ω2 < 0) when q2 lies in the interval
(−q1, q

2
2). For fixed β, increasing the soliton eigenvalue

|µ| forces the interval (0,−q1) to shrink to zero, hence
the soliton becomes unstable for perturbations with small
wavenumbers. The transition from a positive to a negative
q1 value occurs when θ1 < −1/(4β) and is accompanied
by the formation of a finite-size band of linearly stable
modes (Λ < 0 for β, γ < 0). Thus there is an absence
of a long wavelength instability. Interestingly enough, Ω
becomes negative as well when θ1 < −1/(4β), a surprising
agreement with the asymptotic result discussed in Sec. 4
given the fact that we used a simple form for the varia-
tional ansatz. Finally, two typical examples correspond-
ing to positive and negative q1 values are shown in Fig. 10
for parameters β = −1/10 and γ = −1. Overall, we ob-
serve a good agreement between the numerically computed
and semi-analytically obtained stable/unstable perturba-
tion eigenvalues.
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Figure 10: Same as Fig. 9, but for parameters β = −0.1, γ = −1 and
eigenvalues µ = −4(a) and −8(b).
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6. Direct numerical simulations

In this section we perform several direct numerical sim-
ulations to confirm the linear stability results obtained
in Secs. 3,4 and 5 as well as report on the development
of nonlinear instability. We have numerically solved the
Cauchy problem associated with Eq. (1) using a fourth-
order split-step integration method in time and Fourier
spectral discretization in space with boundary conditions:
φ decays rapidly to zero as |x| → ∞ combined with pe-
riodic boundary conditions in the y-direction. The initial
condition used in the simulations is

φ(x, y, 0) = ψ(x) + ε [∂xψ cos (Qy) + iψ sin (Qy)] , (53)

where |ε| � 1 and Q is the linear transverse perturbation
wavenumber that corresponds to either a linearly stable
or unstable mode. The form of the chosen perturbation is
consistent with Eqs. (7) and (9).

First consider the positive β case. The dynamic evo-
lution of a moderate amplitude soliton under the com-
bined effects of a periodically modulated perturbation in
the transverse y-direction and longitudinal localization is
shown in Fig. 11. On a relatively short time scale, a neck-
type instability develops (consistent with the linear the-
ory - see Fig. 3) and ultimately leads to a full break up of
the mode into a sequence of localized bright spots. The
distance between adjacent filaments is approximately 4.19
units, which is roughly the period (2π/Q) of the trans-
verse perturbation. The long time fate of each individual
filament is determined by its intensity: it will either self-
focus, diffract or oscillate. To validate the linear stability
results presented in Secs. 3 and 5 we repeat the numerical
experiments, this time with wavenumber Q > qcut corre-
sponding to Im ω(Q > qcut) = 0. As one can see from
Fig. 12, for short times (linear stability regime) the wave
pattern remains almost undisturbed compared to the ini-
tial state and develops weak bounded oscillations in the
y-direction.

Next we shift our focus to the negative dispersion case
(β < 0). Here we study nonlinear dynamics of transverse
perturbations superimposed on top of a soliton stripe. The
propagation constant µ is chosen such that the linear the-
ory (asymptotic and variational) presented in Secs. 4 and
5 predicts the existence of three linear stable or unstable
Fourier bands, which happens when q1 < 0. With this
at hand, we have simulated Eq. (1) with initial condition
(53) for various values of Q residing in each linear stabil-
ity/instability band. When Q falls into the stable linear
band (0 < Q2 < −q1), full numerical simulations reveal
that the soliton almost preserves its initial shape on the or-
der of short time scale 1/Im ωmax(q) ≈ 0.28 (see Fig. 13).
This observation seems to persist well beyond that time
scale. On the other hand, for the same fixed q1, but with
Q2 chosen now inside the interval (−q1, q

2
2) (corresponding

to linearly unstable modes) the soliton experiences severe
instability and eventually disintegrates into an array of
well separated two-dimensional bright spots as shown in
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Figure 11: A snapshot top view of the intensity field |φ(x, y, t)|2 at
various times obtained from numerical simulation of Eq. (1) using
initial condition (53). The initial soliton profile ψ(x) is chosen from
Fig. 1(b) with parameters β = 0.1, µ = 2 and γ = +1. The pertur-
bation parameters are ε = 0.05 and Q = 1.5.
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Figure 13: A snapshot top view of the intensity field |φ(x, y, t)|2 at
various times obtained from numerical simulation of Eq. (1) using
initial condition (53). The initial soliton profile ψ(x) is chosen from
Fig. 2(b) with parameters β = −0.1, µ = −4 and γ = −1. The
perturbation parameters are ε = 0.05 and Q = 0.4.

Fig. 14. Perturbations with wavenumbers Q2 belonging to
the third linear stable band (q2

2 ,∞) were also examined
and found to remain bounded up to t = 1, conferring with
linear theory.

7. Conclusions

In this paper we have studied the dynamics and for-
mation of coherent structures that result from the devel-
opment of instabilities for families of one-dimensional lo-
calized waves due to the presence of transverse perturba-
tion. Our model equation is the two-dimensional nonlin-
ear Schrödinger equation in the presence of a fourth-order
dispersion. The linear stability analysis predicts the exis-
tence of a finite band of unstable Fourier modes for which
small transverse perturbations grow exponentially in time
and lead to the break up of the soliton stripe. On time
scales larger than the inverse of the growth rate Im ωmax

full nonlinear simulations reveal the formation of arrays of
periodic two-dimensional filaments. The numerical linear
stability analysis is supported by analytical results based
on perturbation theory and variational Lagrangian model
reduction.
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Appendix A. Spectral renormalization method

In this section we outline the spectral renormalization
method [54] used to numerically construct soliton solu-
tions. Other numerical methods based on functional op-
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Figure 14: Same as Fig. 13, but with Q = 2.6.

timization of Sobolev gradients [63] can also be imple-
mented. Solutions to Eq. (3) are sought in the form
φ(x, y, t) = ru(x)eiµt where r is a yet to be determined
renormalization factor and u(x) is the real-valued mode
profile satisfying

1

2
∂2
xu− β∂4

xu+ γr2u3 − µu = 0 . (A.1)

Multiplying Eq. (A.1) by u and integrating over the whole
space gives

r2 =
1
2 ||∂xu||

2
2 + β

∣∣∣∣∂2
xu
∣∣∣∣2

2
+ µ ||u||22

γ ||u||44
. (A.2)

The function u(x) is thus obtained by the following fixed-
point iteration scheme

ûn+1 =
{ζ − µ} ûn + γr2

nF
[
u3
n

]
1
2k

2 + βk4 + ζ
, (A.3)

where r2
n = r2

∣∣
u=un

and F ,F−1 are the forward and in-
verse Fourier transforms respectively defined by

f̂ = F [f ] =
1√
2π

∫
R
f(x)e−ikx dx , (A.4)

and

f = F−1
[
f̂
]

=
1√
2π

∫
R
f̂(k)eikx dk . (A.5)

In iteration scheme (A.3) the parameter ζ is chosen such
that ζ = µ for β > 0 (in which case µ is also positive) and
ζ < 0 satsifying 1 < 16βζ when β is negative.
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