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Abstract. For any dynamical system, we show that higher variation-norms for
the sequence of ergodic bilinear averages of two functions satisfy a large range
of bilinear Lp estimates. It follows that, with probability one, the number of
fluctuations along this sequence may grow at most polynomially with respect to
(the growth of) the underlying scale. These results strengthen previous works of
Lacey and Bourgain where almost surely convergence of the sequence was proved
(which is equivalent to the qualitative statement that the number of fluctuations
is finite at each scale). Via transference, the proof reduces to establishing new
bilinear Lp bounds for variation-norms of truncated bilinear operators on R,
and the main new ingredient of the proof of these bounds is a variation-norm
extension of maximal Bessel inequalities of Lacey and Demeter–Tao–Thiele.

1. Introduction

Let T be an invertible bi-measurable measure-preserving transformation on a
complete probability space X,⌦, µ . Given two measurable functions f

1

, f
2

on
X, we consider their ergodic bilinear averages, namely

Mk f
1

, f
2

x
1

k

k 1

n 0

f
1

T nx f
2

T nx k 1, 2, . . . .

It was shown by Bourgain in [2] that if f
1

, f
2

L X then Mk f
1

, f
2

x k 1

is convergent for µ-almost every x X. Thanks to a bilinear maximal function
estimate of Lacey [14], Bourgain’s result remains valid for f

1

, f
2

Lp1 Lp2 for
every p

1

, p
2

, q satisfying

1

q

1

p
1

1

p
2

,
2

3
q , 1 p

1

, p
2

,(1)

and this has been regarded as a bilinear analogue of the classical Birkho↵ ergodic
theorem. A similar result also holds for a variant of Mk (namely the ergodic
bilinear Hilbert transform), see Demeter [3] and Demeter–Tao–Thiele [7].

Our aim in this paper is to further demonstrate that the sequence Mk f
1

, f
2

x ,
k 1, converges rapidly. To formulate a consequence of our estimates, we recall
the notion of fluctuations of a given sequence a

1

, a
2

, . . . . Given a scale � 0,
the number of fluctuations in ak with respect to this scale is the largest number
` such that there exists ` disjoint intervals

n
1

,m
1

, n
2

,m
2

, . . . n`,m`
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with the following properties: for every 1 j ` it holds that am
j

an
j

1 �.
It follows from the Cauchy criteria that ak is convergent if any only if it has a
finite number of fluctuations at every (finite) scale. Thus results of [2, 14] could
be interpreted as saying that: for almost every x X, at every scale, the number
of fluctuations along Mk f, g x is finite. It turns out that this number grows at
most polynomially as � .

Theorem 1.1. Assume that p
1

, p
2

, q satisfying (1). Then there exists R such

that for every f
1

Lp1
and f

2

Lp2
the following holds: for almost every x X

the number of fluctuations in the sequence Mk f
1

, f
2

x k 1

at any scale � 0 is

bounded above by O �R , where the implicit constant is uniform over � but could

depends on x and f
1

, f
2

.

For an interesting discussion about applications of fluctuation estimates in er-
godic theory, we refer the readers to Avigad–Rute [1] (cf. Kovac [11]).

Theorem 1.1 is an immediate consequence of Theorem 1.2 below, which provides
a more quantitative estimate. To formulate this result, we recall the notion of
variation-norm. Given ⌦ R and a : ⌦ C, let its r-variation norm be

a t V r

t

⌦

: sup
n,N0 N

n

a N
0

r
n

j 1

a Nj a Nj 1

r 1 r ,

in the sup we require Nj ⌦ for every j. We also use the semi-norm variant V r

defined similarly without the first term a N
0

r.

Theorem 1.2. Assume that p
1

, p
2

, q satisfying (1). Then there exists R such

that the following holds for every r R:

Mk f
1

, f
2

x Lq

x

V r

k

f
1 p1 f

2 p2

Via a modification of standard transference arguments (which we will detail in
Section 2), Theorem 1.2 follows from Lp estimates for bilinear singular integrals,
Theorem 1.3 below. To formulate the result, we fix some notations.

Given K : R C su�ciently nice, consider the bilinear operator with kernel K

B f
1

, f
2

x
R
f
1

x y f
2

x y K y dy ,(2)

which is a priori well-defined for Schwarz functions f
1

and f
2

. For any t 0 let
Bt be the bilinear operator with kernel t 1K t 1y .

We will be interested in K : R C such that the following properties hold
uniformly over ⇠ 0:

K ⇠ min 1,
1

⇠
,(3)

dn

d⇠n
K ⇠ n min

1

⇠ n 1

,
1

⇠ n 1

, n 1 .(4)

We will in fact work with K where (4) holds for 1 n n
0

, here n
0

is some given
large number; now the implicit constants are allowed to depend on n

0

. In this
case, we will say that K satisfies (3) and (4) up to order n

0

.
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Theorem 1.3. Assume that p
1

, p
2

, q satisfies (1) and r 2. Then there exists n
0

finite such that if K satisfies (3) and (4) up to order n
0

then

Bt f1, f2 x Lq

x

V r

t

f
1 Lp1 R f

2 Lp2 R ,

where the implicit constant may depend on n
0

and on the implicit constants of (3)
and (4) for 1 n n

0

.

Comparing Theorem 1.3 with Theorem 1.2, it can be seen that there is a dis-
crepancy between the two ranges r 2 and r R. With the current transference
techniques, it seems that to get the range r 2 for Theorem 1.2 one would need
a version of Theorem 1.3 that accommodates rougher K’s, such as K y 1 y 1

,
which would be an interesting open problem left for future studies. In fact, in
our transference argument we also prove a weaker version of Theorem 1.3 for this
particular K where instead of r 2 we only have r R for some finite R, see
Theorem 2.1.

Our proof of Theorem 1.3 could be viewed as a variation-norm extension of
Lacey’s proof of the boundedness of the bilinear maximal function in [14], although
we will follow more closely the expositions in Demeter–Tao–Thiele [7] and Demeter
[3]. The main new ingredient of the proof (compared to [14, 3, 7]) is a variation-
norm extension of maximal Bessel inequality for phase plane projections, which in
turn relies on variation-norm estimates for Fourier projection operators associated
with a collection of frequencies. Maximal estimates for these multi-frequency pro-
jection operators were introduced in Bourgain [2], and variation-norm estimates
for smooth multi-frequency Fourier projections were also considered in [17]. In
our context, it turns out that we need variation-norm estimates for sharp multi-
frequency Fourier projections, similar to the original settings considered by Bour-
gain. On the other hand, L2 bounds would be su�cient for our purpose, and these
estimates are proved in Theorem 8.1 by adapting an argument in [17].

We mention some closely related works in addition to [2, 14, 7, 3]. A dyadic
version of Theorem 1.3 was considered in our previous work [9] (which in turn is an
adaptation of Thiele [18] to the variation-norm setting). The method of proof in
Demeter [3] relies on a weaker version of Theorem 1.3 where the variation-norms
are replaced by finitary oscillation norms, which were also used by Demeter–Lacey–
Tao–Thiele [6] (see also Demeter [4, 5], Nazarov–Oberlin–Thiele [17]) to improve
the Lp ranges in the Bourgain return time theorem. For a nice introduction
to variation-norm estimates in harmonic analysis, see Jones–Seeger–Wright [10].
The time-frequency analysis framework used in our proof originated from Lacey–
Thiele’s proof of the boundedness of the bilinear Hilbert transform [12, 13].

1.1. Outline of the paper. In Section 2 we detail the transference argument that
deduces Theorem 1.2 from Theorem 1.3. In Section 3 we discuss how a short-long
decomposition of the variation-norm leads to a reduction of Theorem 1.3 to two
sub-theorems, which respectively treat the contribution of the long-jumps and the
contribution of the short-jumps. The proof of these Theorems will use restricted
weak-type interpolation methods, which we recall in Section 4.1. In Section 5 we
recall standard terminologies in time-frequency analysis, which will be used in Sec-
tion 6 to describe some wave packet representation for the operators underlying
the long-jump and short-jump contributions. Some old and new auxiliary esti-
mates will be recalled and proved in Section 7, Section 8, Section 9. In Section 11
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we prove a new variation-norm extension of the maximal Bessel inequalities of
Lacey [14] and Demeter–Tao–Thiele [7], which will be used in Section 10 and Sec-
tion 12 to prove the desired estimates for the contribution of the long-jumps. In
Section 13 we briefly discuss the needed cosmetic changes that could be applied
(to the treatment of the long-jump contribution) to get the desired estimates for
the short-jump contributions.

1.2. Notational convention. Given an interval I, we let c I denote the center
of the interval, and for each constant C 0 we let CI denote the dilate of I
around its center by the factor C. We will use e and i to refer to the numbers
exp 1 and 1 respectively, leaving their non-boldfaced counterparts free for
other purposes.

For every interval I let �I x 1 x c I
I

2 2.
For each s 1 we let Ms denote the Ls Hardy-Littlewood maximal operator

Ms f x : sup
R

1

2R

x R

x R

f y s dy
1 s

and abbreviate M : M1.
Throughout the paper we let F denote the Fourier transform

h ⇠ F h . ⇠ :
R
e i2⇡⇠xh x dx .(5)

Note that with this normalization we have

h x
R
ei2⇡x⇠h ⇠ d⇠ .

2. The transference argument

In this section we deduce Theorem 1.2 from Theorem 1.3 using a variant of
standard transference arguments in [2, 7]. Our first step is to show that the
continuous version Theorem 1.2 holds, namely

Theorem 2.1. For every t 0 let St denote the following operator

St f1, f2 x
1

t

t

0

f
1

x t f
2

x t dt .

Then for every p
1

, p
2

, q satisfying (1) there exists R such that for every

r R it holds that

St f1, f2 x Lq

x

V r

t

f
1 p1 f

2 p2 .(6)

Proof of Theorem 2.1. If p
1

, p
2

, q that satisfies (1) we let n
0

n
0

p
1

, p
2

be the
constant required in Theorem 1.3.

Fix r below. We divide the proof into two steps.
Step 1: Let R

0

2 1 n
0

1 u0
u0 1

where u
0

min p
1

, p
2

, 2q 1. We first
show that for r R

0

it holds that

sup
� 0

�N St,�
1
r

Lq

x

f
1 p1 f

2 p2(7)

Clearly, we may find 1 u u
0

and r
0

2 such that r r
0

1 n
0

1 u
u 1

.
For brevity, let n

1

n
0

1 u
u 1

.
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Now, for each 0 ↵ 1 2 let K↵ be a C function supported in 0, 1 such

that 1↵ y 1 ↵ K↵ y 1, we may construct K such that K n
↵ ↵ n for any

n 1.
It is clear that for any n 0 and k 0 we have

dn

d⇠n
K↵ ⇠ n,k ↵ k 1 ⇠ k .

Therefore ↵n0 1K↵ satisfies the assumptions (3) and (4) up to order n
0

(we em-
phasize that the implicit constants are independent of ↵). Let Bt,↵ denote the
bilinear operator with kernel 1

t
K↵

y
t
. It follows that for any r

0

2 we have

↵n0 1 B↵,t f1, f2 x Lq

x

V
r0
t

f
1 p1 f

2 p2 .(8)

Let S denote the positive maximal version of St, namely

S f
1

, f
2

x sup
t 0

St f
1

, f
2

x .

By the bilinear maximal estimate of Lacey, it holds that

S f
1

, f
2 Lq f

1 p1 f
2 p2 .

Let u 1 be such that u min p
1

, p
2

, 2q , then applying the above estimate for
the triple p1

u
, p2

u
, q
u

we obtain

S f
1

u, f
2

u 1 u
Lq f

1 p1 f
2 p2(9)

Now, for brevity in the following we understand that St St f1, f2 x , B↵,t

B↵,t f1, f2 x , S S f
1

, f
2

x , and S ,u S f
1

u, f
2

u x 1 u.
Given any sequence (or functions) a t , t ⌦ , let N a,� be the number of

fluctuations with respect to scale 1 �, i.e. the largest k such that there exists a
sequence of k disjoint intervals N

0

, N
1

, . . . , Nk 1

, Nk , where each Nj ⌦ and
furthermore aN

j

aN
j 1 � for every 1 j k.

For any t 0, using Holder’s inequality we have

St B↵,t 2↵ u 1 uS ,u .

Let � : 2↵ u 1 u, we have

N St, 3�S
,u N B↵,t, �S

,u(10)

here the fluctuation counts are used with respect to the t variable. Using the basic
estimate �N a,� 1 r0 a V r0 and using (8), for every r

0

2 we have

�1 n1S ,u N St, 3�S
,u

1 r0

Lq

x

2↵ 1 n0 �S ,u N St, 3�S
,u

1 r0

Lq

x

↵1 n0 B↵,t f1, f2 x Lq

x

V
r0
t

f
1 p1 f

2 p2 .

Using the Holder inequality and (9), it follows that

�S ,u N St, 3�S
,u

1
r0 1 n1 Lq

x

S ,u
n1

1 n1

Lq

x

�1 n1S ,u N St, 3�S
,u

1
r0

1
1 n1

Lq

x
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therefore

�S ,u N St, 3�S
,u

1
r0 1 n1 Lq

x

f
1 p1 f

2 p2(11)

We note that this estimate holds for any 0 � 1. Letting � 2 k 3, k 0,
and using the triangle inequality it follows that

k 0

2 1 ✏ kS ,uN St, 2
kS ,u

1
r0 1 n1

Lq

x

f
1 p1 f

2 p2 .

Since N St,� 0 for � 2S , and since S ,u S , it follows that

S ,u ✏ sup
� 0

�1 ✏N St,�
1

r0 1 n1 Lq

x

f
1 p1 f

2 p2 .

Using Holder’s inequality and using (9), we obtain

sup
� 0

�N St,�
1

r0 1 n1 1 ✏

Lq

x

f
1 p1 f

2 p2

therefore by choosing ✏ small so that r 1 ✏ r
0

1 n
1

we obtain (7).
Step 2: We now prove (6); the argument below is similar to an argument in

[8]. We plan to use bilinear Marcinkiewicz interpolation: given each p
1

, p
2

, q
satisfying (1) we may let R to be the largest R

0

of the exponents associated with
any four rectangular weak-type endpoints. Let r R, then we could use (7) at all
of these weak-type endpoints. By monotone convergence it su�ces to show that
for any increasing sequence of measurable functions Nk it holds that

k

SN
k

SN
k 1

r 1 r
q f

1 p1 f
2 p2 .

Let T f
1

, f
2 k SN

k

f
1

, f
2

SN
k 1

f
1

, f
2

r 1 r. By bilinear interpolation it
su�ces to prove the weak-type estimate

� x : T f
1

, f
2

x �
1
q f

1 p1 f
2 p2

with uniform implicit constants over � 0. By scaling symmetries and dilation
symmetry of St, we may assume � f

1 p1 f
2 p2 1. Let

E x : sup
k

SN
k

SN
k 1

1

Clearly E N St, 1 q 1. For x E, we estimate T f
1

, f
2

x by considering
level sets for SN

k

SN
k 1

(as a function of k) and obtain:

T f
1

, f
2

x q

j 0

2 jrN St, 2
j

q r

✏,q

j 0

2 1 ✏ qjN St, 2
j q r

Therefore by the Chebyshe↵ inequality we obtain

x : T f
1

, f
2

x 1 1 q E 1 q x E : T f
1

, f
2

x 1 1 q

1
j 0

2 1 ✏ qjN St, 2
j q rdx 1 q .
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Using (7) for r r
1 �

where � 0 is su�ciently small so that r R, we have

N St, 2
j q rdx N St, 2

j 1 r q 1 �

Lq 1 � x
2jq 1 �

Therefore

x : T f
1

, f
2

x 1 1 q 1
j 0

2 1 ✏ qj2jq 1 � 1 q 1

by choosing ✏ 0 su�ciently small depending on � (which in turn depends on r
and R). This completes the proof of (6).

We now transfer Theorem 2.1 to the integers. Fix r R. We’ll show that for
any two sequences f

1

n and f
2

n indexed by Z it holds that

Mk f
1

, f
2

n Lq

n

V r

k

f
1 `p1 Z f

2 `p2 Z ,

Mk f
1

, f
2

n :
1

k

k 1

m 0

f
1

n m f
2

n m .

To see this, let St be the bilinear operator defined in (2) with kernel t 11
0 y t,

where t 0. We extend f
1

and f
2

from Z to R by letting:

(i) F
1

x f
1

n if there exists n Z such that x n 1 2 1 3, and
F
1

x 0 otherwise;
(ii) F

2

x f
2

n if there exists n Z such that x n 1 2 1 3, and
F
2

x 0 otherwise.

Let n Z and x n 1

6

, n 1

6

. Then for any m Z it holds that

m y m 1

F
1

x y F
2

x y dy
2

3
f
1

n m f
2

n m

Thus for any k 0 we have

Sk F
1

, F
2

x
1

k
0 y k

F
1

x y F
2

x y dy
2

3
Mk f

1

, f
2

n ,

and consequently

Mk f
1

, f
2

n V r

k

inf
x n 1

6 ,n
1
6

Sk F
1

, F
2

x V r

k

.

It follows that

Mk f
1

, f
2

n Lq

n

V r

k

St F1

, F
2

x Lq

x

V r

t

,

and using Theorem 2.1 we can bound the right hand side by

F
1 Lp1 R F

2 Lp2 R C f
1 `p1 Z f

2 `p2 Z .

Our next step is to transfer the result on Z to a more general setting. Let T be
a measure-preserving transformation on a complete probability space X,⌦, µ .
Let f and g be given.

Fix a large integer N , which we will send to later. All implicit constants
below are independent of N and x.
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For fixed x, let M f, g,N x be the r-variation norm of the finite sequence
indexed by 0 k N :

1

k
0 m k 1

f Tmx g T mx .

Note that for every 0 n N the value of M f, g,N T nx depends only on
f Tmx and g Tmx with m 2N . Thus, using the Z-result, it follows that

n N

M f, g,N T nx q

m 2N

f Tmx p1 q p1

m 2N

g Tmx p2 q p2

Integrating over x X and using the Hölder inequality, we obtain

n N X

M f, g,N T nx qdµ x

m 2N X

f Tmx p1dµ x
q p1

m 2N X

g Tmx p2dµ x
q p2

.

Using the fact that T is bi-measure preserving on X,µ , we obtain

M f, g,N Lq X,µ f Lp1 X,µ g Lp2 X,µ ,

and by sending N we obtain the conclusion of Theorem 1.2. This completes
the transference argument, and the rest of the paper is devoted to the proof of
Theorem 1.3. We’ll assume that K satisfies (3) and (4) up to some large order
that may depend on p

1

, p
2

, q, r. We will also free the symbol St which could be
used in the future for di↵erent purposes.

3. Separation of short and long jumps

For any function a t on R it is not hard to see that

a t V r

t

a t S
t

a 2n V r

n

Z ,

a t S
t

:
n Z

a t 2

V 2
t

2

n,2n 1
1 2

Applying this estimate to a t Bt f1, f2 x , the proof of Theorem 1.3 is divided
into two parts: the first part handle the long-jumps (i.e. a 2n V r

n

Z ) and the
second part handles the short jumps (i.e. a t S

t

).

Theorem 3.1. For any r 2 and p
1

, p
2

, q satisfying (1) it holds that

B
2

n f
1

, f
2

x Lq

x R V r

n Z p1,p2,r f
1 p1 f

2 p2

Theorem 3.2. Assume that p
1

, p
2

, q satisfy (1) and r 2. Assume that Ks, 1
s 2 is a family of kernels such that Ks satisfies (3), (4) up to a high order

n
0

n
0

p
1

, p
2

, q, r , and furthermore

Ks ⇠ ⇠ , ⇠ 0 ,(12)

and the implicit constants are uniform over 1 s 2. Then it holds that

2

1 n Z
f
1

y f
2

y 2 nKs 2 ny dy 2 1 2ds q f
1 Lp1 R f

2 Lp2 R .
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Theorem 3.1 immediately takes care of the long-jump component of the variation
norm Bt f, g V r

t

. Below we deduce the desired estimate for the short jump
component from Theorem 3.2.

We first note that if a t is di↵erentiable then using . V 2 . V 1 we obtain

a t V 2
t

2

n,2n 1 a t L1
t

2

n,2n 1 2n a 2ns L1
s

1,2 .

Therefore using Minkowski’s inequality we have

a t S
t

n Z
22n a 2ns 2 1 2

L1
s

1,2

n Z
2ns a 2ns 2 1 2

L1
s

1,2

We plan to apply the estimate to a t Bt f1, f2 x where x is fixed. Let
h y K y yK y , or equivalently h ⇠ ⇠ d

d⇠
K ⇠ . Let Ht be the bilinear

singular integral with kernel t 1h t 1y . Then

t
d

dt
Bt f1, f2 x Ht f1, f2 x ,

therefore

Bt f1, f2 x S
t

n Z
H

2

ns f1, f2 x 2 1 2

L1
s

1,2

We may write H
2

ns f1, f2 x f
1

x y f
2

x y 2 nKs 2 ny dy with Ks y :
s 1h s 1y , and it is not hard to see that Ks satisfies (3), (4), (12) uniformly in
s 1, 2 . Thus, the desired estimates for the short jump component of Bt f1, f2
follows from Theorem 3.2.

In the rest of the paper we prove Theorem 3.1 and Theorem 3.2. We will use
the restricted weak-type interpolation approach of [15], which will be discussed in
the next section.

4. Linearization and interpolation

4.1. Linearization. For each x consider a measurable function L : R Z
the set of positive integers, and two sequences of measurable functions: a non-
decreasing integer valued sequence kn x L x

n 0

and a sequence an x L x
n 1

such
that n 0

an x r 1. Then an appropriate choice of L and such sequences
guarantees that

B
2

k f
1

, f
2

x V r

k

Z 2
L x

n 1

B
2

k

n

f
1

, f
2

x B
2

k

n 1 f
1

, f
2

x an x .

Similarly, for each s 1, 2 we may find a sequence of measurable functions
dn s, x n such that n dn s, x 2 1, and

n Z
f
1

x y f
2

x y 2nKs 2ny dy 2 1 2

2
n Z

f
1

x y f
2

x y 2nKs 2ny dy dn s, x
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The desired estimates in Theorem 3.1 and Theorem 3.2 follow from certain
restricted-weak type estimates for the following tri-linear forms, which we will
discuss in the next section.

⇤long f
1

, f
2

, f
3

*
L

n 1

B
2

k

n

f
1

, f
2

B
2

k

n 1 f
1

, f
2

an, f3

+

⇤short f1, f2, f3
2

1

⇤short,s f
1

, f
2

, f
3

ds

⇤short,s f
1

, f
2

, f
3

*

n Z
f
1

y f
2

y 2 nKs 2 ny dydn s, , f
3

+
.

4.2. Restricted weak-type interpolation. For any G R with finite Lebesgue
measure, we say that H G is a minor subset if H G 2.

Let ↵ ↵
1

,↵
2

,↵
3

R3 be such that ↵
1

↵
2

↵
3

1 and at most one
↵j could be negative. We say that a tri-linear functional ⇤ f

1

, f
2

, f
3

satisfies
restricted weak-type estimates with exponents ↵ if the following holds.

Case 1: min ↵
1

,↵
2

,↵
3

0. Then we require existence of j
0

1, 2, 3 with
the following property: for every triple F

1

, F
2

, F
3

of finite Lebesgue measurable
subsets of R we could find B Fj0 minor subset such that

⇤ f
1

, f
2

, f
3

F
1

↵1 F
2

↵2 F
3

↵3(13)

for any f
1

, f
2

, f
3

with the following property: fj 1F
j

if j j
0

, fj0 1F
j0 B.

Case 2: min ↵
1

,↵
2

,↵
3

0. Let k be such that ↵k 0. By assumptions on ↵
the other ↵j’s are nonnegative. Then we require the above property with j

0

k.
Let A be the hexagon on the plane L ↵

1

↵
2

↵
3

1 with vertices

A
1

1

2
,
1

2
, 1 , A

2

1

2

, 1

2

, 1 , A
3

1

2
, 1,

1

2
,(14)

A
4

1

2
, 1,

1

2
, A

5

1, 1

2

, 1
2

, A
6

1,
1

2
,

1

2

By the interpolation argument of [15], to show Theorem 3.1 and Theorem 3.2 it
su�ces to prove that in any given neighborhood (in the plane L) of any vertex of
A we could find ↵ such that ⇤long f

1

, f
2

, f
3

and ⇤short f1, f2, f3 satisfy restricted
weak-type estimates with exponents ↵. (Note that when ↵ is near a vertex of A
it is automatic that at most one coordinate of ↵ could be negative.)

It will be clear from our proof (of the restricted weak-type estimates for all
involved trilinear forms) that the index j

0

and the exceptional setB depend only on
↵ and F

1

, F
2

, F
3

. Also, in the proof the choice of ↵ (inside any small neighborhoods
of any given vertices of H) will not depend on the underlying trilinear form.

Therefore, a posteriori, to show the restricted weak-type estimates for ⇤short it
su�ces to obtain the same estimate for ⇤short,s (with the same set of exponents),
provided that the implicit constants are uniform over s 1, 2 . This uniformity
in turn is a consequent of the fact that the implicit constants in the assumptions
for Ks are uniform over s 1, 2 .

Similarly, in the proof for ⇤long we’ll decompose it into a weighted sum of simpler
trilinear forms, and it su�ces to obtain the restricted weak-type estimates for
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each of the new forms (with the same set of exponents) provided that the implicit
constants are uniform.

5. Terminology of tiles and trees

In this section we recall some terminologies from [14, 7, 3] that will be used in
the proof. By a grid we mean a collection of intervals whose lengths are integral
powers of 2 such that if I, I are two intersecting elements then I I or I I.
In addition to the standard grid G

0

of dyadic intervals 2i m,m 1 , we will use
the grids

G`,t 2i m
`

5
, 2i m

`

5
1 : i t mod 4 ,m Z

where ` and t are integers, clearly G`,t depends only on ` mod 5 and t mod 4 .
We will also make use of the grids

G
1

2i m
1 i

3
, 2i m

1 i

3
1 : m Z

G
2

2i m
1 i

3
, 2i m

1 i

3
1 : m Z .

It is clear that for every (not necessarily dyadic) interval I there is a d 0, 1, 2
and a J Gd such that I J and J 3I; we then say that I is d-regular.

A tile p is a rectangle Ip !p R2 of area 1 such that Ip is dyadic. A tri-tile P
will consist of a quadruplet of intervals IP ,!P1 ,!P2 ,!P3 where IP is dyadic and
IP !P

i

1 for each i. Associated to the tri-tile P are the three tiles Pi IP !P
i

which justify the notation that is implicit in the previous sentence.
For each quadruplet of integers ⌫ j

1

, j
2

, e, i such that 0 j
1

, j
2

4 and
498 e 4002 and 0 i 4000, consider the collection of tri-tiles

P⌫ 2 i m, 2 i m 1 ,

2i n
j
1

5
, 2i n

j
1

5
1 ,

2i n e
j
2

5
, 2i n e

j
2

5
1 ,(15)

2i 2n e
j
1

j
2

5
1 , 2i 2n e

j
1

j
2

5
2

: m,n, i Z, i i mod 4000

Above, we clearly have !P1 Gj1,i, !P2 Gj2,i, and !P3 Gj1 j2,i.
Fixing ⌫ for the remainder of the section (some definitions below depend on ⌫),

we now recall, from [3] (cf. [15]), some notions of order for tiles.

Definition 5.1. For two tiles p, p we write

p p if Ip Ip and 3!p 3!p

p p if p p or p p
p p if Ip Ip and !p 10 e !p

p p if p p and 10!p 10!p
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It is not hard to see that if P, P P⌫ are two tri-tiles with Pi Pi for some
i 1, 2, 3 then Pj Pj for each j 1, 2, 3 i .

The ordering above gives rise to the concept of a tree, which we recall below:

Definition 5.2. Let i 1, 2, 3 . An i-overlapping tree is a collection of tri-tiles

T P⌫ together with a top tri-tile PT P⌫ which satisfies

Pi PT i for all P T PT .

We say that T is a tree if it is an i-overlapping tree for some i 1, 2, 3 . We say

that T is a tree with top if PT T .
A tree T is called j-lacunary if

Pj PT j for all P T PT .

It follows that a tree is j-lacunary if and only if it is i-overlapping for some
i 1, 2, 3 j , furthermore for each P T we have sgn c !P

j

c ! P
T

j

✏i,j
where we define ✏i,j sgn e for i, j 1, 2 , 1, 3 , 3, 2 and ✏i,j sgn e
for i, j 2, 1 , 3, 1 , 2, 3 . We will abbreviate IT : IP

T

.

Definition 5.3. We will say that a collection of trees T is strongly j-disjoint for
some j 1, 2, 3 if

(1) Each T T is j-lacunary
(2) If T, T T and T T then T T
(3) If T, T T, T T , P T , P T , and !P

j

!P
j

then IP IT
(4) If T, T T, T T , and P T then Pj PT j

Note that, due to our choice of order on tiles, the condition (4) above is some-
what nonstandard (in comparison with, say, [3]). Also note that conditions (2)
and (3) imply that if T, T T, T T , P T , and P T then Pj Pj .

6. Discretization

In this section, we discuss discretization, i.e. wavelet representation, for ⇤long

and ⇤short,s. We’ll largely follow [3]. We’ll discuss in details the process for ⇤long,
the discretization for ⇤short,s will be similar and discussed at the end of the section.

6.1. Cancellation between dilates. The point of conditions (3), (4) is that
they allow one to decompose K into much simpler kernels:

Lemma 6.1. If K satisfies (3) and (4) then

K ⇠
j Z

cjKj 2j⇠ , ⇠ 0 ,(16)

where cj j `1 Z and each Kj could be furthermore written as the sum of dilates

of a single generating function Kj ` 0

�j 2` , where supp �j 500
⇠ 4000 , and it holds uniformly in j that

� n
j x Cm,n 1 x m(17)

for every m,n 0. If K satisfies (3) and (4) up to some high order then (17)
holds for m,n M with M comparably large.
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The utility of this approach lies in the following cancellation between dilates of
Kj: for every integers k

1

k
2

we have Kj 2k2⇠ Kj 2k1⇠ k1 ` k2
�j 2`⇠ ,

which turns out to be convenient for reducing ⇤long to wavelet operators. Namely,
by pulling out the sum in j, we thus see that the consideration of ⇤long reduces to
considerations of ⇤j, defined by:

⇤j f
1

, f
2

, f
3

:

*
L

n 1 k
n 1 ` k

n

B�
j

,` f1, f2 an, f3

+
,

B�
j

,` f1, f2 x : f
1

x y f
2

x y 2 `�j 2 `y dy ,

and B�
j

,` could be decomposed into a finite number of discrete wavelet operators
at scale `; this decomposition will be discussed in Section 6.2.

Proof of Lemma 6.1. Observing that the given assumptions on K implies the ex-
istence of K 0 and K 0 . We consider two cases. We’ll only consider the
setting when (3) and (4) hold for all orders; the finite order case could be achieved
by the same argument.

Case 1: Suppose that K 0 K 0 0, then using the given assumptions
on K it follows that for every n 0 it holds that

dn

d⇠n
K ⇠ ⇠ n min ⇠ , 1 ⇠

(the improvement is at n 0). Let ⌘ be a nonnegative C bump function on
1000 ⇠ 2000 such that j ⌘ 2j⇠ 1 for every ⇠ 0. Let

Kj ⇠ 2 j K 2 j⇠ ⌘ ⇠ ,

which is supported in 1000 ⇠ 2000 , it is routine to check that (16) holds
with cj 2 j , and dn

d⇠n
Kj ⇠ n 1 for all n 0. Let �j ⇠ Kj ⇠ Kj 2⇠ , then

�j has the desired properties.

Case 2: K 0 , K 0 0, 0 . Let ' be such that ' is supported on
2000, 2000 and is in C R 0 , and ' ⇠ K 0 for ⇠ 0, 1000 and

' ⇠ K 0 for ⇠ 1000, 0 . Then by writing K � K � and applying
the analysis in Case 1 for K �, we are left with ', for which we will decom-
pose directly into the sum of dilates of a single generating function. Namely, let
� ⇠ ' ⇠ ' 2⇠ , it is clear that � satisfies the desired properties.

6.2. Wave packet representation. Below we will decompose B�
j

,` f1, f2 into
wavelet sums. For convenience of notation, we will suppress the variable j, namely
below � �j whose Fourier transform is supported on 500 ⇠ 2000 and �
satisfies (17) up to su�ciently high order.

Definition 6.2. We say that  is an L2

wave packet of order M adapted to a

tile p I ! if  is supported in ! and the following estimate holds for all

0 m,n M :

dn

dxn
e 2⇡ic ! x x CM,N,n,m

1

I n 1
2

�I x m(18)
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Lemma 6.3. Given any M,N 0, if � satisfies (17) up to su�ciently high order

and � is supported in 500 ⇠ 4000 then for each ` Z B�,` f1, f2 x can

be written as the sum over ⌫ j
1

, j
2

, e , 0 j
1

, j
2

4 and 498 e 4002
integers, of

j Z
2 N j

P P
⌫

: ! 2

`

IP
1 2 hf

1

, j,P,1i hf2, j,P,2i j,P,3 x ,(19)

where (uniform over tri-tiles P P⌫, i 1, 2, 3, and j 0)  j,P,i is an L2

wave

packet adapted to Pi of order M (the constants in (18) may depend on M,N, ⌫).

Proof. We considerM below, the finite case is similar. Recall that the Fourier
transform F is defined by (5). We first make several remarks about B�,`. Suppose

that the supports of  
1

and  
2

are contained in intervals !
1

,!
2

respectively. Then
the identity

F B�,`  1

, 
2

⇠
R
 
1

⇠ ⌘  
2

⌘ � 2l 2⌘ ⇠ d⌘

gives rise to two observations. First, if B�,`  1

, 
2

does not vanish then

!
1

!
2

500 2 ` ⇠ 4000 2 ` .(20)

Second, the support of Fourier transform of B�,`  1

, 
2

is contained in

!
1

!
2

.(21)

Now, turning to spatial localization, we have

e 2⇡i2⇠xB�,`  1

, 
2

x B�,` e
2⇡i⇠  

1

, e 2⇡i⇠  
2

x .(22)

Since � satisfies (17), it follows that if for some ⇠, x
1

, x
2

we have

dn

dxn
e 2⇡i⇠x i x Cn,m2

` n 1
2 1

x xi

2`
m

for each i 1, 2, and for every n,m 0, then

dn

dxn
e 2⇡i2⇠xB�,`  1

, 
2

x(23)

Cn,m2
` n 1 1

x
1

x
2

2`
m 1

x x
1

x
2

2

2`
m

for each n,m 0. (Here we emphasize that Cm,n’s are independent of ⇠.)

Fix a Schwartz function  supported on 0, 2 5 such that j Z  j
5

2 1.
For each pair of intervals I,! with ! I 1 let

 I,! e 2⇡ic I ⇠ ! 1 2 ! 1 ⇠ c !

which is supported inside the right half of !. Using a Fourier sampling theorem,
for any Schwartz function f it holds that

f
4

j 0 ! G0

! 2

`

I G0

I 2

`

D
f, I,! j

5 !

E
 I,! j

5 ! .
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Let !
1

! j1
5

! and !
2

! j2
5

e ! . By (20), it follows that B�,` f1, f2 x
can be written as the sum over triplets of integers j

1

, j
2

, e , with 0 j
1

, j
2

4
and 498 e 4002, of

! G0

! 2

`

I1 G0

I1 2

`

I2 G0

I2 2

`

hf
1

, I1,!1i hf2, I2,!2i'I1,I2,!,j1,j2,e x ,(24)

'I1,I2,!,j1,j2,e x : B�,`  I1,!
j1
5 !

, 
I2,!

j2
5 e !

x .

By (21), 'I1,I2,!,j1,j2,e is supported on !
3

: 0, ! 2c ! j1 j2
5

e ! and,
by (23), satisfies

dn

dxn
e 2⇡i 2c !

j1 j2
5 e ! x'I1,I2,!,j1,j2,e x(25)

Cn,m2
` n 1 1

c I
1

c I
2

2`
m 1

x c I
1

c I
2

2

2`
m

Cn,m2
` n 1 1

c I
1

c I
2

2`
m 1

x c I
1

2`
m

for each n,m 0. (Note that j
1

, j
2

, e are bounded.)
We now fix I

1

and further divide the right hand side of (24) according to j :
2 ` c I

1

c I
2

. For j 0 i.e. for terms in the sum (24) where I
1

I
2

: I
we may define the tri-tile P I,!

1

,!
2

,!
3

and the corresponding wave packets
naturally

 
0,P,1  I1,!1 ,  

0,P,2  I2,!2 ,  
0,P,3 I 1 2 I1,I2,!,j1,j2,e .

The remaining terms can be dealt with by using the rapid decay in c I
1

c I
2

,
(25): we still define  j,P,1  I1,!1 , however to shift the localization of  I2,!2 to I

1

we define

 j,P,2 : 1
c I

1

c I
2

2`
L  I2,!2 ,

 j,P,3 : 2Nj 1
c I

1

c I
2

2`
L I 1 2 I1,I2,!,j1,j2,e

for some large L. (The rapid decay in (25) takes care of the extra factors in  j,P,3.)
Finally, we split (24) up one more time so that whenever I I we have

I 24000k I for some positive integer k. Note that while this splitting gives rise
to the sparseness required by P⌫ , it also means that we need to relabel and rescale
the �j,P,i slightly to maintain the sequence of weights 2 N j .

It follows that to prove restricted weak-type estimates for ⇤long, we are left with
showing the following theorem. In the theorem, ⌫ j

1

, j
2

, e, i is any quadruplet
of integers such that 0 j

1

, j
2

4, 498 e 4002, 0 i 4000, and P⌫ is
defined by (15).

Theorem 6.4. Let r 2 and p
1

, p
2

, q satisfy (1).
Suppose that (uniformly over tri-tiles P P⌫, i 1, 2, 3),  P,i is an L2

normal-

ized wave packet adapted to Pi up to order M su�ciently large (the required M
may depend on p

1

, p
2

, q).
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Then the trilinear form

*
L

n 1 P P
⌫

: 2

k

n 1 I
P

2

k

n

IP
1 2 hf

1

, P,1i hf2, P,2i P,3 an, f3

+

satisfies restricted weak-type estimates with exponents ↵ arbitrarily close to any

given vertex of A defined by (14).

Recall that L x
n 1

an x r 1. For convenience, let aP x : am x if m
m P, x is the unique integer in 1, . . . , L x satisfying 2km 1 x IP 2km x ,
and aP x 0 if such m does not exist. We also let �P,3 x ap x  P,3 x and
�P,i  P,i for i 1, 2. Let P be a finite subset of P⌫ . It su�ces to demonstrate
that the trilinear form

⇤P f
1

, f
2

, f
3

*

P P

IP
1 2 hf

1

,�P,1i hf2,�P,2i�P,3, f3

+
(26)

is of restricted weak type with exponents ↵, with P-uniform implicit constants.

6.3. Discretization for ⇤short,s. Recall that

⇤short,s f
1

, f
2

, f
3

*

n Z
f
1

y f
2

y 2 nKs 2 ny dydn s, , f
3

+

Using Ks ⇠ ⇠ we could proceed as in Case 1 of the proof of Lemma 6.1 and
obtain a decomposition

Ks ⇠
j Z

2 j Ks,j 2j⇠

where Ks,j is supported in 1000 ⇠ 2000 and dn

⇠n
Ks,j ⇠ n 1 for all n 0.

Thus it su�ces to consider restricted weak-type estimates for
*

n Z
f
1

y f
2

y 2 n j Ks,j 2 n j y dy dn s, , f
3

+

*

n Z
BK

s,j

,n f
1

, f
2

dn s, , f
3

+
.

Now using Lemma 6.3 with Ks,j playing the role of �, it follows that to obtain
the desired restricted weak-type estimates for ⇤short we are left with showing the
following theorem. Below, ⌫ j

1

, j
2

, e, i is any quadruplet of integers such that
0 j

1

, j
2

4, 498 e 4002, 0 i 4000, and P⌫ is defined by (15).

Theorem 6.5. Let r 2 and p
1

, p
2

, q satisfy (1).
Suppose that (uniformly over tri-tiles P P⌫, i 1, 2, 3),  P,i is an L2

wave

packet adapted to Pi up to order M su�ciently large.

Let dn n Z be a sequence of measurable functions such that n dn x 2 1.
Then the trilinear form

*

n Z P P
⌫

: I
P

2

n

IP
1 2 hf

1

, P,1i hf2, P,2i P,3 dn, f3

+
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satisfies restricted weak-type estimates with exponents ↵ arbitrarily close to any

vertex of A defined by (14).

7. Auxiliary estimates

The following bound follows from the Lépingle inequality and a square function
argument, see [10] for details.

Lemma 7.1. Let ⇣ be any Schwartz function. Let ⇣k 2 k⇣ 2 k
. Then for

r 2 and 1 s it holds that

⇣k f x Ls

x

V r

k

Z r,s f Ls

Next, we have a Rademacher-Menshov type lemma:

Lemma 7.2. Let f
1

, . . . , fN be functions on a measure space X such that for every

sequence of signs ✏
1

, . . . , ✏N 1, 1 it holds that

✏
1

f
1

✏
2

f
2

✏NfN L2 B.(27)

Then

n

j 1

fj x L2
x

V 2
n

1 log N B.

Proof. We rewrite n
j 1

fj x fn x
1 j n fj x . Estimating the V 2 norm

by the `2 norm, it is clear that

fn x L2
x

V 2
n

N

j 1

fj
2

L2

1 2

E✏1,...,✏n

j

✏jfj L2 B .

It remains to consider the contribution from
1 j n fj. For each n 1, . . . , N

we will decompose 1, n into disjoint subintervals,

0, n
m log2 N

!n,m ,

as follows: Let I be the dyadic interval of length 2m 1 that contains n. If n is on
the left half of I then let !n,m . If n is on the right half of I then let !n,m be
the left half of I. It follows that

j n

fj x L2
x

V 2
n

0 m log2 N j !
n,m

fj x L2
x

V 2
n

.

Since for each m, !n,m is constant (in n) on dyadic intervals of length 2m, we have

j !
n,m

fj x L2
x

V 2
n

! dyadic: ! 2

m j !

fj x 2 1 2

L2
x

B.

here the final inequality follows from another appeal to (27) using sequences ✏j
that are constant (as functions of j) on dyadic intervals of length 2m.

We’ll also use a Bessel inequality, Lemma 7.3. For a proof see e.g. [7, Proposition
13.1]. Below recall that  P,j are (unmodified) L2-normalized Fourier wave packet
up to su�ciently high orders:
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Lemma 7.3. Let j 1, 2, 3 . Let T be a collection of strongly j-disjoint trees,
let Q T T T , and suppose that T T 1I

T

L L. Then for any sequence of

coe�cients bP P Q

P Q

bP P,j L2 log 1 L bP `2 Q .

8. A variation-norm multiplier estimate

In this section we consider a variation-norm version of Bourgain [2, Lemma
4.11], namely Theorem 8.1 below. In the following, let ⇠

1

. . . ⇠N be real
numbers. For each integer k we denote the sharp multi-frequency projection at
scale k onto ⇠

1

, . . . , ⇠N by ⇧k f F 1 1R
k

f , where Rk ⇠ ⌦

⇠ 2 k, ⇠ 2 k .

Theorem 8.1. For every r 2 and ✏ 0 it holds that

⇧k f x L2
x

V r

k

Cr,✏N
✏ f L2 .

A variant of Theorem 8.1 with smooth multi-frequency projections was consid-
ered in [17], where a range of Lp estimates was obtained; for the current paper we
need sharp frequency projections, but L2 is su�cient.

The starting point of our proof is Lemma 3.2 from [17]:

Lemma 8.2. Suppose that ck k 0

is a sequence in RN
, and 2 q r. Then

N

j 1

ck,je
2⇡i⇠

j

y
L2
y 0,1 V r

k 0
CN

1
2

1
q

r

r 2 ck V q

k 0 `2 RN

where C may depend on r, q and minj ⇠j ⇠j 1

.

Through a standard averaging argument (see e.g. the proof of Proposition 4.1
in [17]), the lemma above gives

Proposition 8.1. Let � be a smooth function such that � is identically one on

0.9, 0.9 and supported on 1, 1 . Assume that ⇠j 1

⇠j 1 for each j, and let

�k,j be defined by �k,j ⇠ � 2k ⇠ ⇠j . Then for r 2 and ✏ 0 it holds that

1 j N

�k,j f x L2
x

V r

k 0
Cr,✏,�N

✏ f L2

Proof. To keep the paper self-contained, we sketch the averaging argument. Let
fj x F 1 1 ⇠ ⇠

j

1

f ⇠ x . Since ⇠j’s are separated, we have f
2

fj L2 `2
j

.

Let M be the best constant such that if supp gj ⇠j 1, ⇠j 1 for all j then

1 j N

�k,j gj x L2
x

V r

k 0
M gj L2

x

`2
j

,

by the triangle inequality and Lemma 7.2 it is clear that M O�,r N . Our
aim is to show that M O✏,r,� N ✏ . Since gj is supported on ⇠j 1, ⇠j 1 , for
y small we have

gj x e2⇡i⇠jygj x y L2
x

`2
j

y gj L2
x

`2
j

.
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Averaging over 0 y � with 1 � 1 su�ciently small, we obtain

1 j N

�k,j gj x L2
x

V r

k 0

C�

1 j N

e2⇡i⇠jy �k,j gj x y L2
y 0,1 L2

x

V r

k 0

M

2
gj L2

x

`2
j

C�

1 j N

e2⇡i⇠jy �k,j gj x L2
x

L2
y 0,1 V r

k 0

M

2
gj L2

x

`2
j

using translation invariant and Fubini. Using Lemma 8.2 for each fixed x it follows
that for q 2 su�ciently close to 2 (depending on ✏ 0) we have

1 j N

�k,j gj x L2
x

V r

k 0
C✏,q,rN

✏ �k,j gj x L2
x

V q

k

`2
j

M

2
gj L2

x

`2
j

C✏,q,rN
✏ �k,j gj x `2

j

L2
x

V q

k

M

2
gj L2

x

`2
j

C✏,q,r,�N
✏ gj `2

j

L2
x

M

2
gj L2

x

`2
j

,

in the second estimate we used q 2 and in the last estimate we used Lemma 7.1.
Since this holds for arbitrary gj satisfying supp gj ⇠j 1, ⇠j 1 , by definition
of M we obtain M C�,✏,q,rN ✏ M

2

, therefore M O✏,r,� N ✏ as desired.
Now, using Proposition 8.1 and a simple square function argument, we obtain

a frequency separated version of Theorem 8.1. Namely, if ⇠j 1

⇠j 1 for each j
then for r 2 and ✏ 0 it holds that

⇧k f L2
x

V r

k 0
Cr,✏N

✏ f L2 .

To remove the frequency separation requirement ⇠j 1

⇠j 1, we will need the
following estimate, which will be proved using Lemma 7.2.

Proposition 8.2. Suppose that S is a finite set of integers. Then

⇧k f L2
x

V 2
k S

C 1 log S f L2(28)

Proof. Let n S . Let s
1

. . . sn be elements of S. For j 1, . . . , n 1 write

fj F 1 1R
s

j

1R
s

j 1
f

and let fn F 1 1R
s

n

f . Then, the fj are orthogonal in L2 R , and ⇧s
k

f

j k fj, so Lemma 7.2 gives (28).

Proof of Theorem 8.1. By monotone convergence, it su�ces to prove

⇧k f x L2
x

V r

k a,b

Cr,✏N
✏ f L2

for every finite interval a, b , provided that the constant is independent of a, b .
Now, we may choose kj N

j 0

with

a k
0

. . . kN b
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so that the number of connected components of Rk is constant on each interval
kj, kj 1

. Then, for each x

⇧k f x V r

k a,b

C ⇧k
j

f x V r

j 0,N
C

N

j 1

⇧k f x 2

V r

k k

j 1,kj

1 2

.

The contribution to the L2

x norm of the first term on the right above is acceptable
by Proposition 8.2. Furthermore, for each k, k kj 1

, kj we have

⇧k f x ⇧k f x ⇧k fj x ⇧k fj x

where fj F 1 1R
k

j 1
1R

k

j

f . Thus, using the orthogonality of the fj it
su�ces to show that, for each 1 j N ,

⇧k f x L2
x

V r

k k

j 1,k
j

Cr,✏N
✏ f L2 .

Fix j and let M be the (constant) number of connected components of Rk for
k kj 1

, kj , clearly M N . For k kj 1

, kj we can write Rk as the disjoint
union of open intervals

Rk

1 ` M

I`,k

where I`,k I`,k for k k. Let ⌦ ⇠
1

, . . . , ⇠N and define

L : ` 1,M : I`,k
j 1 ⌦ 1 , ⇧k f :

` L

F 1 1I
`,k

f

and let L 1,M L and define ⇧ analogously. Clearly ⇧k ⇧k ⇧k.
Rescaling by a factor of 2kj 1 , an application of the known frequency-separated
case immediately gives

⇧k f x L2
x

V r

k k

j 1,k
j

Cr,✏ L
✏ f L2

and so it remains to consider ⇧ . For each ` L let

⇣` min I`,k
j 1 ⌦ , ⇢` max I`,k

j 1 ⌦

and I` ⇣`, ⇢` , so that I`,k ⇣` 2 k, ⇣` I` ⇢`, ⇢` 2 k . Now, define

⇧ ,1
k f

` L

F 1 1 ⇣
`

2

k,⇣
`

2

k f

⇧ ,2
k f

` L

F 1 1 ⇢
`

2

k,⇢
`

2

k f .

For k kj 1

, kj we obtain the decomposition

⇧k f g ⇧ ,1
k h

1

⇧ ,2
k h

2

where g F 1

` L I`f (which stays the same under ⇧ ) and

h
1

F 1

` L

1 ⇣
`

2

k

j 1 ,⇣
`

f , h
2

F 1

` L

1 ⇢
`

,⇢
`

2

k

j 1 f
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Rescaling by a factor of 2kj 1 , an application of the known frequency-separated
case then gives

⇧ ,i
k hi x L2

x

V r

k k

j 1,k
j

Cr,✏ L
✏ hi L2

for i 1, 2, finishing the proof.

9. Size and a variation-norm size bound

We will use the following standard notion of size:

Definition 9.1. Let j 1, 2, 3 , P P⌫, and f be a function on R. Then

sizej P, f sup
T P

1

IT P T

hf,�P,ji 2

1 2

where the supremum is over all j-lacunary trees contained in P and where the

functions �P,j are defined in Section 6.

The aim of this section is to prove:

Proposition 9.1. Let s 1, r 2, and P P⌫ . Then for j 1, 2, 3

sizej P, f r,s sup
P,P P

sup
I
P

I I
P

1

I
f x s�I x 2 dx

1 s

where the inside supremum is over dyadic intervals.

We will make use of a John-Nirenberg type lemma, proven in [16]

Lemma 9.2. Let cP P P be a collection of coe�cients. Let j 1, 2, 3 . For

1 p let

Bp sup
T P

1

IT 1 p
P T

cP
2

1I
P

IP
1 2

Lp

where the sup is over all j-lacunary trees, and define B
1, analogously. Then

B
2

CB
1,

Recall that ⌫ j
1

, j
2

, e, i with 0 j
1

, j
2

4, 498 e 4002, and 0 i
4000. We will also need the following lemma:

Lemma 9.3. There is a Schwartz function ⇣ such that for each j-lacunary tree

T P⌫, j 1, 2, 3 , each sequence of coe�cients cP P T and each integer k with

2k IT and k i mod 4000 we have

P T : I
P

2

k

cP�P,j x e
2⇡ic !

P

T

j

x 2 k⇣ 2 k e
2⇡ic !

P

T

j

P T

cP�P,j x

Proof. One can check that for each P with IP IT , we have

!P,j c ! P
T

j

10 IP
1, 10000 IP

1

(the sign depends on e and j.) Choosing ⇣ with ⇣ 1 on 10000, 10000 and ⇣
supported on 10001, 10001 , the fact that for P T we have log

2

IP i
mod 4000 then gives the lemma since 24000 10 10001.
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Proof of Proposition 9.1. The case j 1, 2 of the desired conclusion is standard
and we could actually get s 1, so the argument below (while applicable for all j)
is only needed for j 3. By Lemma 9.2 it su�ces to fix a j-lacunary tree T P
and show that

1

IT 1 s
P T

hf,�P,ji 2

1I
P

IP

1 2

Ls

(29)

r,s sup
P,P T

sup
I
P

I I
P

1

I
f x s�I x 2 dx

1 s

.

By dividing T into maximal subtrees with top, we may assume that PT T . Let
R denote the right side of (29). If supp f R 2IT then for each P T

hf,�P,ji
1

IP 1 2

C
IP
IT

M 2 1

IP
f x �I

P

x 2 dx(30)

C
IP
IT

M 2

R .

With M su�ciently large (say M 3), it follows that the left side of (29) is
bounded above by

C
1

IT 1 s
P T

IP
IT

M 2

IP
1 sR

CR

Thus, it remains to prove (29) for functions supported on 2IT . From this support
assumption, we see that it su�ces (by choosing I IT ) to show

P T

hf,�P,ji 2

1I
P

IP

1 2

Ls

Cr,s f Ls .(31)

By the usual Rademacher function argument, the left side of (31) is

sup
b
P P T P T

bP hf,�P,jihI
P

Ls

where the supremum is over all sequences bP of 1’s on T and hI
P

is the L2

normalized Haar function adapted to IP . After fixing such a sequence and using
duality, we are then reduced to showing the bound

P T

bP hg, hI
P

i�P,j Ls

Cr,s g Ls

(32)

where s s s 1 . Recalling the definition of �P,j the left side of (32) is

P T
I
P

2

k

bP hg, hI
P

i P,j x Ls

x

V r

k

.(33)
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By Lemma 9.31 the display above is

2 k⇣ 2 k e
2⇡ic !

P

T

j

P T

bP hg, hI
P

i P,j x Ls

x

V r

k

.

By Lemma 7.1, the display above is

Cr,s

P T

bP hg, hI
P

i P,j Ls

g Ls R

the second estimate follows from standard Calderón-Zygmund theory.

10. A variation-norm size increment lemma

Proposition 10.1. Let P P⌫ be a finite collection of tri-tiles, � 0, r 2, and
j 1, 2, 3 . Suppose that M (from the hypotheses of Theorem 6.4) is su�ciently

large depending on �. Then for each ↵ satisfying

sizej P, f ↵

we can find a collection of trees T, each contained in P, satisfying

sizej P
T T

T, f
1

2
↵,(34)

T T

IT
f L

↵

�

↵ 2 f 2

L2 .(35)

Below, we show how Proposition 10.1 follows from the variation-norm Bessel
inequality, Theorem 11.1. The proof uses a standard stopping time argument,
which we recall in order to note that our condition (4) in the definition of strong
j-disjointness is satisfied.

Below recall that if T is i-overlapping then for each j 1, 2, 3 i the sign
✏i,j : sgn c !P

j

c ! P
T

j

depends only on i, j, e, and not on T (for details
see the discussion after Definition 5.2).

Proof. (reduction to Bessel inequality). By scaling f we may asssume that ↵ 1.
It su�ces to show that for each i 1, 2, 3 j we could find T satisfying (35)

such that for each i-overlapping tree T P T T T we have

1

IT P T

hf,�P,ji 2

1

4
.(36)

Let T
0

S
0

. Suppose T
0

, . . . , Tn and S
0

, . . . , Sn have been chosen and set

Pn P
n

k 0

Tk Sk

If there are no i-overlapping trees T Pn violating (36) then we finish by setting

T Tk
n
k 1

Sk
n
k 1

.

1Here we use the fact that the variation over all k in (33) is the same as the variation restricted
to 2k IT and k i mod 4000 which is the same as the restricted variation for convolution
which is bounded by the variation over all k for the convolution.
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Otherwise, if Pn contains an i-overlapping tree violating (36) then we may choose
such a tree Tn 1

so that ✏i,jc ! P
T

n 1
j

is maximal. We then let Tn 1

be the

maximal (with respect to inclusion) i-overlapping tree contained in Pn which
satisfies PT

n 1 PT
n 1

. Let Sn 1

be the maximal (with respect to inclusion)
j-overlapping tree contained in Pn Tn 1

which satisfies PS
n 1 PT

n 1

Since P is finite and Tn , this process will eventually terminate, yielding
some

T : Tk
N
k 1

Sk
N
k 1

.

We claim that the collection Tk
N
k 1

is strongly j-disjoint (recall that this is defined
in Definition 5.3), and so Proposition 10.1 follows from Theorem 11.1. It su�ces
to verify condition (3) and condition (4) of Definition 5.3.

In the following, let k k , P Tk, and P Tk .
For (3), assume that !P

j

!P
j

. Then !P
j

24000 !P
j

which implies that
✏i,jc ! P

T

k

j

✏i,jc ! P
T

k

j

and so k k. But, since 3! P
T

k

j

30 e !P
j

3!P
j

and P Sk we must have IP IT
k

.
Now, to see condition (4), by symmetry it su�ces to show that Pj PT

k

j.
First suppose that Pj PT

k

j, or equivalently P PT
k

. Then for each P Tk

we have Pi Pi PT
k

i and so we must have k k or else every element of
Tk would have already been chosen in Tk . But, if k k then we would have
P Tk, contradicting P Tk . Now, suppose that Pj PT

k

j. Then, as in the
verification of (3), ✏i,jc ! P

T

k

j

✏i,jc ! P
T

k

j

and so k k. But, the fact that

P Sk contradicts Pj PT
k

j.

11. A variation-norm Bessel inequality

In this section, we fix � 0 and assume that the order M of the wave packets
(from the hypotheses of Theorem 6.4) is su�ciently large depending on �. Our
goal here is to prove the following variation-norm Bessel inequality:

Theorem 11.1. Let T be a collection of strongly j-disjoint trees, such that

sup
I dyadic

1

I
P T
I
P

I

hf,�P,ji 2 1 2 1 2
1

IT P T

hf,�P,ji 2 1 2 ,(37)

for each T T. Let P T T T . Then

P P

hf,�P,ji 2

� f �
L f 2

L2 .

As in [7], we prove Theorem 11.1 via a sequence of reductions.

11.1. Proof of Theorem 11.1, reduction 1. Thanks to Lemma 11.2 below,
Theorem 11.1 follows immediately from the following proposition:

Proposition 11.1. Assume P and T as in Theorem 11.1. Then for all � 0

P P

hf,�P,ji 2

� NT
�
L f x 2�I x 10 dx ,(38)

if IT I dyadic for all T T.
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Lemma 11.2 below in turn is a result from [7] where it was proved using a series
of interesting Lemmas. To keep the current paper self-contained, we’ll sketch a
direct proof, which simplifies some arguments in [7]. To formulate the lemma, we
first fix some notations. For S T let NS denote T S 1IT , and define

S BMO : sup
I dyadic

1

I
T S:I

T

I

IT .

Lemma 11.2. Let A,B 0 and 0 � 1. Let T be a collection of trees. If for

every subset S of T it holds that NS 1

A NS
�

and S BMO B NS
�

then

T BMO � B
1 1 � , NT 1 � AB

� 1 �

Proof of Lemma 11.2. We first show that T BMO 3B 1 1 � . It su�ces to
show that for every dyadic interval I

0

it holds that

1

I
0 T T:I

T

I0

IT
1

2
T BMO 3� 1 � B1 1 �(39)

Fix I
0

. Let S contains all elements T T such that IT I
0

and the set S T :
IT IS I

0

contains at most 3B 1 1 � elements. Clearly NS 3B 1 1 � ,
therefore by the given assumption we have

S BMO B 3B � 1 � 3� 1 � B1 1 � .(40)

Let J be the set of maximal dyadic intervals J I
0

such that the set S T :
J IS I

0

contains more than 3B 1 1 � elements. Clearly, for every T T S
such that IT I

0

, IT is contained in one of these J ’s. It follows that

1

I
0 T T S

I
T

I0

IT
1

I
0 J J T T

I
T

J

IT
T BMO

I
0 J J

J .(41)

By maximality of J , there exists T T such that IT J . Let SJ denote the
collection of such T , then SJ BMO NS

J

SJ , therefore using the given
assumption we obtain NS

J

B1 1 � . For every x J it follows that

NS x
T T:J I

T

I0

1I
T

x
T T:J I

T

I0

1I
T

x B1 1 �

31 1 � 1 B1 1 � 2 3� 1 � B1 1 � .

Together with (41), we obtain

1

I
0 T T S:I

T

I0

IT
T BMO

I
0

NS L1 I0

2 3� 1 �
T BMO

S BMO

2 3� 1 �
.

Using (40), (39) immediately follows, completing the proof of T BMO � B1 1 � .
We now free the variables I

0

, S, J to be used for other purposes below.
Fix a large constant C 0 to be chosen later. Let S contain all T T such that

IT is not a subset of x : NT x CB1 1 � . It is clear that NS CB1 1 � ,
so by the given hypothesis NS 1

C�AB� 1 � . It su�ces to show that

NT S 1

O� C 1 NT 1

.(42)

Indeed, from (42) by choosing C large we obtain NT S 1

1 2 NT 1

, thus
NT 1

2 NS 1

which implies the desired estimate.
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Let J be the collection of maximal dyadic subintervals of x : NT x CB1 1 � .
It follows that if T T S then IT is a subset of some element of J. Therefore

NT S 1

J J T T:I
T

J

IT
J J

J T BMO

T BMO x : NT x CB1 1 � T BMO
NT 1

CB1 1 �
.

Since T BMO O� B1 1 � , we obtain NT S 1

O� C 1 NT 1

, as desired.

11.2. Proof of Theorem 11.1, reduction 2. We first note that (38) follows
from the unweighted version where the factor �10

I is not on the right hand side.
Indeed, writing hf,�P,ji

⌦
f�10

I ,� 10

I �P,j

↵
and using the fact that � 10

I x is also
a polynomial in x (which implies that � 10

I  P,j is still a wave packet adapted to Pj

of order su�ciently large, recall also that �P,j and  P,j are the same if j 1, 2 and
related by a variational factor if j 3), (38) follows from applying the unweighted
version to f�10

I and the rescaled wave packets.
We now show that the unweighted (38) follows from the following proposition.

Proposition 11.2. Let T be strongly j-disjoint. Let P T T T . Then for every

L NT there exists P P with the following two properties:

P P P

hf,�P,ji 2

� L� f 2

2

,(43)

P P

IP � L 1

T T

IT .(44)

Indeed, apply Proposition 11.2 with L C NT for a su�ciently large �-
dependent constant C. Now, to get (the unweighted) (38) it su�ces to show

P P

hf,�P,ji 2

1

2
P P

hf,�P,ji 2 .(45)

Let IP0 be a maximal interval in IP , P P , and remove from P all tri-tiles
P such that P is in the same tree as P

0

and IP IP0 . We repeat this process
with what is left of P . This algorithm gives a collection of tree T such that
IT , T T cover P while T T 1I

T T T 1I
T

. Now, using (37) and (44),
(45) follows from the following sequence of estimates and choosing C large:

P P

hf,�P,ji 2

T T

IT NT

P P

IP

� L C L 1

T T

IT
2

C
P P

hf,�P,ji 2 .

11.3. Proof of Theorem 11.1, reduction 3. In this section we reduce Proposi-
tion 11.2 to the following more technical result. We first fix some notations. Given
A 1 and d 0, 1, 2 , a collection of intervals I G

0

is A, d -sparse if

for each I I, AI is d-regular (see Section 5);
for each I, I I with I I , we have I 2100A I ;
for each I, I I with I I , we have dist I, I 100A I .
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Proposition 11.3. Let A,L, ⌘ 1, and ✏ 0. Let T be a collection of

strongly j-disjoint trees with NT L L. Let P T T T, and suppose that

IP : P P IT : T T is A, d sparse. Then, there exists P P such that

P P

IP ⌘ A ⌘ L ⌘

T T

IT , and

P P P

hf,�P,ji 2

⌘,✏ AL ✏ L8A3 ⌘ 2 f 2

L2 .

Assuming Proposition 11.3 we will prove Proposition 11.2.
Let T be j-strongly disjoint and P T T T .
By a simple pigeonholing argument, given any A 1 we may partition P

into subsets P
1

, . . . ,PL where L O A2 , with the following property: for each
1 k L there exists d 1, 2, 3 such that IP , P Pk is A, d -sparse.

This partition also lead to a partition of each T T, therefore Pk is also the
union of a collection Tk of j-strongly disjoint trees with NT

k

NT L.
Each tree in Tk could be further decomposed into subtrees such that: each of
the new subtrees contains its own top, and the top intervals of the subtrees are
disjoint. We obtain Tk a collection of trees with top, which is still j-strongly
disjoint, furthermore NT

k

NT
k

L.
We are now in a position to apply Proposition 11.3 for Tk, producing Pk Pk.

Letting P
1 k L Pk and using L O A2 it follows that

P P

IP ⌘ A2 ⌘ A2L ⌘

T T

IT

P P P

hf,�P,ji 2

⌘,✏ A1 ✏L✏ L8A4 ⌘ 2 f 2

2

The desired estimates for P follows by letting ✏ � 2, A L✏ 1 ✏ , and ⌘ large.

11.4. Proof of Theorem 11.1, reduction 4. Let I IT : T T . Let D⌘ 0
to be chosen later (depending only on ⌘). For each I I consider the D⌘ A ⌘

L ⌘ I neighborhood of its endpoints, i.e. the set of x such that dist x, I
D⌘ A ⌘ L ⌘ I . Let E

1

be the union of these neighborhoods over I I, and
let E

2 I I M1I 2 L2 . We then let P be the set of all P P such that
IP E

1

E
2

. Using the Fe↵erman–Stein maximal inequality, it follows that

P P

IP ⌘ A ⌘ L ⌘

I I

I L 4 2⌘

I I

M1I
2

2 ⌘
2 ⌘

⌘ A ⌘ L ⌘ NT 1

.

Let T
2

T T : IT E
1

E
2

and let I
2

denote the set of top intervals of T
2

.
We now show that T T2

M 1I
T

2

⌘ L4, and this will allow us to reduce
Proposition 11.3 to Proposition 11.4 below. Since for each I I

2

there are at most
L elements of T with IT I, it su�ces to show that

I I2

M 1I x 2

⌘ L3

uniform over x R, which we fix below. By further dividing I
2

it su�ces to prove
that I I3

M 1I x 2

⌘ L2 for every I
3

I
2

with the following property: if
I, I I

3

and I I then I 2 L I . By further dividing I
3

we may assume
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that one of the following situations occur: (i) x I for all I I
3

; (ii) x is on the
left of I for all I I

3

; (iii) x is on the right of I for all I I
3

.
Now, the desired estimate is clear for (i), so by symmetry we only consider

situation (ii). By monotonicity we may assume further that x is the left endpoint
of some J I

3

. By definition of E
1

it follows that for every I I
3

J we have
dist x, I L ⌘ max J , I . Using the A, d sparseness of I

3

, it follows that

I I3

M 1I x 2

I J

M1I x 2

I 2

L J

M1I x 2

I 2

L J

M1I x 2

⌘ 1 L⌘2 L inf
x J

I I3: I 2

L J

M1I x 2

L2 (using the definition of E
2

).

Proposition 11.4. Let A,L, ⌘ 1 and ✏ 0. Let T be strongly j-disjoint with

T T

M 1I
T

2

L L .(46)

Let P T T T . Assume that IP : P P IT : T T is A, d sparse, and

sup
x I

P

dist x, IT D⌘A
⌘ IT(47)

for all P P, T T. Then for D⌘ su�ciently large depending on ⌘ it holds that

P P

hf,�P,ji 2

⌘,✏ AL ✏ L2A3 ⌘ 2 f 2

L2 .

11.5. Proof of Proposition 11.4. For convenience of notation, assume without
loss of generality that A2L is an integer. By duality, it su�ces to show

P P

bP�P,j L2 ⌘,✏ AL ✏ L2A3 ⌘(48)

for every sequence bP P P such that b `2 P 1, which we will fix below.
Let J IT : T T and let JA IT A : T T where IT A is an interval

in Gd (guaranteed by A, d sparsity) such that AIT IT A 3AIT .
From the A, d sparsity, it is clear that the map from IT IT A is bijective

from J to JA and that if IT IT then IT A IT A.
We now decompose JA into “layers”. Let JA,1 be the set of maximal intervals

in JA and for m 1 let JA,m 1

be the set of maximal intervals in JA
m
n 1

JA,n.
Now, since IT A 3AIT for each T , using (46) we have

J J
A

1J L 16A2

T

M 1I
T

2 16A2L .

Thus, JA,1, . . . ,JA,16A2L partition JA. Letting Jm J J : J A JA,m it
follows that J

1

, . . .J
16A2L partition J . Thanks to A, d sparsity of J again, this

partition is consistent with the usual set inclusion ordering in J , in the sense that
if J Jm, J Jn, and J J then m n.

For J J let m be such that J Jm, and define

PJ : P P : IP J

P J : P P : IP J but IP J for all J
m m

Jm .
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We obtain the following partition of P:

P
1 m 16A2L J J

m

PJ P J .(49)

By definition of �P,j, it is clear that (48) will follow from the following estimates

J J P P
J

: I
P

2

k

bP P,j x L2
x

V r

k

⌘ 1 log2 AL A ⌘L(50)

J J P P
J

: I
P

2

k

bP P,j x L2
x

V r

k

⌘,✏ AL ✏ L2A3 ⌘ .(51)

11.6. Proof of (50). Recall that b `2 P 1. Recall that  P,j is a wave function
of order M , which is assumed su�ciently large compared to ⌘. We first estimate
the error term

E x :
J J : x J

A

P P
J

bP P,j x .

Lemma 11.3. It holds that

J J P P
J

: I
P

2

k

bP P,j x V r

k

n

m 1 J J
m

P P
J

bP P,j x V r

n

2E x .

Proof. Using the triangle inequality and the definition of E x , the left hand side
of the desired estimate is bounded above by

J J : x J
A

P P
J

: I
P

2

k

bP P,j x V r

k

E x

J J : x J
A

, J 2

k P P
J

bP P,j x V r

k

E x .

Now, the intervals J A that contain x are nested, with larger interval belongs to
some JA,m with smaller m, thus we could bound the last display by

n

m 1 J J
m

:x J
A

P P
J

bP P,j x V r

n

E x

n

m 1 J J
m

P P
J

bP P,j x V r

n

2E x

finishing the proof.

Lemma 11.4. It holds that

E x L2 ⌘ A ⌘L .

Proof. We note that any T T contributes at most O 1 tri-tiles to each PJ and
such a contribution would necessitate J IT . Thus, PJ NT L L, so

J J P P
J

IP
1 2  P,j L L

J J
M 1J

2

L L2 .

We also have

1R AI
P

 P,j L1 M A1 M IP
1 2
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which gives

J J : x J
A

P P
J

IP
1 2 b2P P,j x L1 M A1 M b 2

`2 P A1 M .

Choosing M su�ciently large, depending on ⌘, the desired bound for E
2

follows by an application of Cauchy-Schwarz.
Applying Lemma 7.3, we see that for any sequence ✏m 16A2L

m 1

1, 1 we have

16A2L

m 1 J J
m

P P
J

✏mbP P,j L2 1 log L

therefore, by Lemma 7.2 we have
n

m 1 J J
m

P P
J

bP P,j x L2
x

V r

n

1 log 16A2L 1 log L

which, combined with Lemma 11.4 and Lemma 11.3, gives (50).

11.7. Proof of (51). Here, we use two error terms

E
1

x
16A2L

m 1 J J
m

x J
P P

J

bP P,j x

E
2

x
16A2L

m 2 J J
m

x J
m m P P

J

m

I
P

J

bP P,j x

where, if J Jm and m m then we let Jm denote the unique element of Jm

such that J A Jm
A.

Lemma 11.5. It holds that

J J P P
J

I
P

2

k

bP P,j x V r

k

E
1

x E
2

x
n

m 1 J J
m

P P
J

bP P,j x V r

n

m,J J
m P P

J

: I
P

2

k

bP P,j x 2

V r

k

1 2

.

Remark: A simpler analogue of Lemma 11.5 was considered in [7, Lemma 12.2].
Our Lemma 11.5 (and the following Lemma 11.7) in fact fills in a small gap in [7,
Lemma 12.2], where an error term similar to E

2

was not treated.

Proof. By the triangle inequality

J J P P
J

I
P

2

k

bP P,j x V r

k

J J
x J

P P
J

I
P

2

k

bP P,j x V r

k

E
1

x

Let J
1

. . . JN be the (nested) intervals in J that contain x. Choose
k
1

, . . . , kN so that 2kl Jl , which (together with N) are functions of x. Then,
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the first term on the right of the last display could be rewritten as

1 ` N P P
J

`

I
P

2

k

bP P,j x V r

k

` P P
J

`

I
P

2

k, I
P

J
` 1

bP P,j x V r

k

E
2

x

where, for the inequality above, we use the fact that J` 1

J` and so J` 1 A

J` A. Using a long jump/short jump decomposition of the variation-norm, the
first term on the right side of the inequality above is A

1

A
2

, where

A
1

` P P
J

`

: I
P

2

k

n , I
P

2

k

` 1

bP P,j x V r

n

A
2

2
n ` P P

J

`

I
P

2

k, I
P

2

k

` 1

bP P,j x 2

V r

k

n 1 k k

n

1 2.

It is clear that

A
1

` n P P
J

`

I
P

2

k

` 1

bP P,j x V r

n

` n P P
J

`

bP P,j x V r

n

E
2

x

n

m 1 J J
m

x J
P P

J

bP P,j x V r

n

E
2

x

n

m 1 J J
m

P P
J

bP P,j x V r

n

E
1

x E
2

x ,

A
2

2
n P P

J

n

I
P

2

k

bP P,j x
` n P P

J

`

I
P

2

k

` 1

bP P,j x
2

V r

k

n 1 k k

n

1 2

2
n P P

J

n

I
P

2

k

bP P,j x 2

V r

k

n 1 k k

n

1 2

2
m,J J

m

P P
J

I
P

2

k

bP P,j x 2

V r

k

1 2

.

Lemma 11.6. It holds that

E
1

x L2 ⌘ LA1 ⌘ .

Proof. Using Cauchy-Schwartz it su�ces to show that for each m

J J
m

: x J P P
J

bP P,j x L2 ⌘ L1 2A ⌘ bP `2
J J

m

P
J

.

Using the Fe↵erman-Stein maximal inequality and the fact that the intervals in
Jm are disjoint, it su�ces to prove that if J Jm and x J then

P P
J

bP P,j x ⌘ L1 2A ⌘ bP `2 P
J

J 1 2 M 1J x 2.
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Now, if T intersects P J then J IT , therefore using (46) we see that at most
L trees in T contribute a given P J . Thus, using Cauchy Schwarz it su�ces to
show that, for each T T,

P T P
J

 P,j x 2

⌘ A 2⌘ J 1 M 1J x 4.(52)

Choosing D⌘ large enough, the A, d sparsity and (47) imply that for each P in
the sum above

sup
y I

P

dist y, J D⌘A
⌘250A J 1 2 IP

1 2

249A J 1 2 IP
1 2 .

Recall that M is the order of the wave packet  P,j. Thus, for x J , choosing M
large enough we obtain

 P,j x 2

M 2 49A M 4

J

IP
M 4 IP

1 M 1I
P

x 4

⌘ A 2⌘ J

IP
2 J 1 M 1J x 4.

Summing over P P J T we obtain (52).

Lemma 11.7. It holds that

E
2

x L2
x

⌘ L2A3 ⌘

Proof. By Cauchy-Schwarz, it su�ces to show that for 1 m m we have

J J
m

x J
P P

J

m

I
P

J

bP P,j x L2
x

⌘ L1 2A ⌘ bP `2
J J

m

P
J

The above bound will follow, by Cauchy-Schwarz, from the following two estimates

J J
m

x J
P P

J

m

I
P

J

IP
1 2  P,j x L ⌘ LA 2⌘(53)

J J
m

x J
P P

J

m

I
P

J

IP
1 2 b2P P,j x L1 bP

2

`2
J J

m

P
J

.(54)

To see (53) fix x and choose the unique J Jm with x J. As in Lemma 11.6,
it su�ces to show that for each T T

P P
J

m

T : I
P

J

IP
1 2  P,j x ⌘ A 2⌘.(55)

Choosing D⌘ large, it follows (as in Lemma 11.6) that the following holds for every
P in the sums above:

inf
y I

P

dist y, J 249A J 1 2 IP
1 2 .

Since IP J and P P Jm

, it follows that IP J . Since x J , using
A, d sparseness and (47) we obtain

dist x, IP 249A J 1 2 IP
1 2 .
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Due to the restriction of the sum to tiles in a single tree, each dyadic interval is
the time interval of at most O 1 tri-tiles, and so for each k 0

P P
J

m

T : I
P

2

k J

IP
1 2  P,j x M 2 49A M 1 2 k M 1 2 ,

and summing over k gives (55).
To see (54) simply use the fact that the intervals in Jm are pairwise disjoint to

estimate the left side by

P
J J

m

P
J

IP
1 2 b2P P,j x L1 b 2

`2
J J

m

P
J

Applying Lemma 7.2 and Lemma 7.3 as in the proof of (50) we have
n

m 1 J J
m

P P
J

bP P,j x L2
x

V r

n

1 log2 AL

Thus, using Lemma 11.5, Lemma 11.6, and Lemma 11.7, to finish the proof of
(51) it su�ces to establish the following inequality (for each m and J m JL):

P P
J

: I
P

2

k

bP P,j x L2
x

V r

k

✏ L✏ bP `2 P
J

.(56)

Let TJ be the collection of trees in T which contribute to P J . As above, we have
TJ L. For each T TJ let ⇠T c ! P

T

j

. Then, for each P T TJ we have

!P
j

⇠T 10 e !P
j

, ⇠T 10 e !P
j

.

Furthermore, from condition (4) in the definition of strong j-disjointness and the
fact that J IT for each T TJ , we have that

dist ⇠T ,!P
j

!P
j

4

for each P P J and each T TJ . Therefore, if we let

Rk

T T
j

⇠T 10 e 2 k, ⇠T 10 e 2 k

and ⇧k be the Fourier projection operator ⇧k f F 1 1R
k

f then, for each
k i mod 4000 we have

P P
J

I
P

2

k

bP P,j ⇧k

P P
J

bP P,j .(57)

Thus, by Theorem 8.1 and Lemma 7.3 we have (56).

12. Concluding the proof of Theorem 6.4

Let P be a finite subset of P⌫ . Our aim is to prove that the trilinear form

⇤P f
1

, f
2

, f
3

*

P P

IP
1 2 hf

1

,�P,1i hf2,�P,2i�P,3, f3

+
(58)
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satisfies restricted weak-type estimates with exponents ↵ arbitrarily close to any
vertex of A define by (14), with implicit constants uniform over P. We’ll consider
neighborhoods of A

1

1

2

, 1
2

, 1 , the other vertices could be treated similarly.
By (dyadic) dilation symmetry we can assume F

1

1 2, 1 . Fix s 1 close
to 1 to be chosen later, and choose

B
3

j 1

Ms 1F
j

C Fj
1 s ,

with C su�ciently large so that B 1

4

. Let f
1

1F1 B and f
2

1F2 and
f
3

1F3 . Decompose P k 0

Pk where

Pk P P : 2k 1 dist IP , B
c IP 2k 1 .

For P Pk we have

sup
I
P

I

1

I
fj x s�I x 2 dx

1 s

2k s sup
I
P

I

1

2kI
fj x s�

2

kI x 2 dx
1 s

2k s inf
x 2

kI
P

Ms 1F
j

x

2k s Fj
1 s

Therefore, by Proposition 9.1, for j 2, 3 we have

Sj : sizej Pk, fj 2k s Fj
1 s.(59)

Here (and below) the implicit constants may depend on r, s, and �i (defined
below). Now, when j 1 we will obtain the improved estimate

S
1

: size
1

Pk, 1Bcf
1

C2 M 2 k(60)

by exploiting the fact that the interval I in the last sup has to be contained inside
another IP for some P Pk.

Now, applying Proposition 10.1 repeatedly, we obtain a decomposition of Pk

into collections of trees Tn n Z with

T T
n

IT 2n,(61)

such that for any T Tn we have

sizei T, fi 2 n 2s Fi
1 2s .(62)

Now, for any tree T we have

P T

IP
1 2

3

i 1

hfi,�P,ii 3 IT

3

i 1

sizei T, fi .(63)

To see (63), by further decomposing T if needed we may assume that T is i-
overlapping for some i 1, 2, 3 . Then estimating

IP
1 2 hfi,�P,ii sizei T, fi

and applying Cauchy-Schwarz to estimate the remaining bilinear sum by

IT
j 1,2,3 i

sizej T, fj
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one obtains (63).
Applying (61), (62), (63), we obtain

⇤k f
1

, f
2

, f
3

n

2n
3

i 1

min Si, 2
n 2s Fi

1 2s ,

⇤k f
1

, f
2

, f
3

:
P P

k

IP
1 2

3

i 1

hfi,�P,ii .

For any �
1

, �
2

, �
3

0, 1 , we obtain

⇤k f
1

, f
2

, f
3

S
1

S
2

S
3

n

2n min 1, 2 n
�1 �2 �3

2s

3

i 1

Fi

�

i

2sS �
i

i .

The above estimate is a two sided geometric series if we choose �i’s such that
�
1

�
2

�
3

2s (which is possible for s close to 1). Letting �i : 2s�i �
1

�
2

�
3

we obtain

⇤k f
1

, f
2

, f
3

3

i 1

S1 �
i

i Fi
�
i

2s

2
k

s

2 �2 �3 s M 2 1 �1

3

i 1

Fi
1

�

i

2

1 s

(using (59), (60)).

Again assuming that �
1

�
2

�
3

2s we are guaranteed �
1

1 and so, choosing
M large enough depending on � we may sum in k to conclude

⇤ f
1

, f
2

, f
3

3

i 1

Fi
1

�

i

2

1 s

Since F
1

1, we can ignore its contribution in the above estimate. Now, by
sending s, �

1

, �
2

, �
3

to 1, 1, 1, 0 inside the region �
1

�
2

�
3

2s 0
�
1

, �
2

, �
3

1 s , we obtain the desired claim.

13. Proof of Theorem 6.5

The proof of Theorem 6.5 is entirely similar to the proof of Theorem 6.4, essen-
tially the main di↵erence is that variation-norm estimates such as the continuous
Lépingle inequality (see Lemma 7.1) is replaced by the classical Littlewood–Paley
square function estimate. We briefly discuss the cosmetic changes, the details are
left to the reader. We may define �P,j  P,j for j 1, 2, and �P,3  P,3dn if
IP 2n and 0 otherwise.
Now, the sizes are defined exactly as before, and to get the size estimates for

size
3

P, f (as in Proposition 9.1) we use the same proof, the only di↵erence is near
the end we appeal to the classical Lp estimates for the Littlewood–Paley square
functions associated with scales of the underlying tree, instead of the continuous
Lépingle inequality.

Now, to get the size increment estimate (as in Proposition 10.1) we use the same
reduction to a Bessel inequality as in Theorem 11.1. To prove this Bessel estimate
for the new �P,3, we follow the same sequence of reductions and the proof reduces
to proving Proposition 11.4 with the new modified wave packets. We perform the
same partition of P as in (49), and it su�ces to show the following two analogues



36 YEN DO RICHARD OBERLIN EYVINDUR A. PALSSON

of (50) and (51). Below we let Sk denote the `
2

sum of a sequence indexed by k
and bP is a sequence on P with normalized `2 P norm.

J J P P
J

: I
P

2

k

bP P,3 x L2
x

S
k

⌘ 1 log2 AL A ⌘L(64)

J J P P
J

: I
P

2

k

bP P,3 x L2
x

S
k

⌘,✏ AL ✏ L2A3 ⌘ .(65)

The proofs of these two estimates are similar. We’ll use the same error terms
E x , E

1

x , and E
2

x , and using analogues of Lemma 11.3 and Lemma 11.5 the
proofs of (64) and (65) reduce to proving

m 1 J J
m

P P
J

bP P,3
2 1 2

2

1 log 16A2L 1 log L(66)

m 1 J J
m

P P
J

bP P,3
2 1 2

2

1 log 16A2L 1 log L(67)

k P P
J

: I
P

2

k

bP P,3
2 1 2

2 ✏ L✏ bP `2 P
J

(68)

We note that the square norm is bounded above by the 2-variation norm. Thus,
using Lemma 7.2 the estimates (66) and (67) follow from Lemma 7.3. Similarly,
using Proposition 8.2 and the Fourier projection representation (57), the estimate
(68) follows from Lemma 7.3.
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