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ABSTRACT

We present new analytical and numerical results for modes of at stellar disks which lie in potentials
with soft centers. Stars primarily circulate in one direction. We identify two modes of angular
wavenumber 2: a more central fundamental mode and a more extensive and more spiral (trailing)
secondary mode. The fundamental mode is particularly sensitive to the population of stars of low
angular momentum. Depending on that population, a small fraction of the whole, the fundamental
mode varies from a small compact bar to a trailing spiral that is almost as wound as the secondary
mode. Modes transfer angular momentum from the central to the outer regions of the disk. Most of
them release gravitational energy and convert it to kinetic energy, which also ows outwards through
the disk. Few Fourier components contribute signi�cantly to this transfer. All modes rotate too
rapidly to have an inner Lindblad resonance, and are unstable unless there is a suÆciently large
external halo or bulge.

Subject headings: stellar dynamics | galaxies: kinematics and dynamics | galaxies: spiral | galaxies:
structure

1. INTRODUCTION

The publication by Lin & Shu (1964) of a density wave
theory of spiral structure has led to a broad literature.
One strand of that literature consists of stellar dynamic
studies of at stellar systems. Lin & Shu assumed tight{
winding of waves, and near{circularity of the stellar or-
bits of the unperturbed disk. Using these same approxi-
mations, Toomre (1964) showed that the stability of stel-
lar disks to axisymmetric waves requires that the param-
eter Q = ��R=3:36G�D > 1. Here � is the epicyclic
frequency, �R is the radial velocity dispersion, �D is the
disk density, and G is the gravitational constant. This
result has proved to be remarkably robust and widely ap-
plicable, despite the simplifying approximations used in
deriving it. Yet it was soon recognized that Toomre's cri-
terion does not provide a complete stability criterion for
stellar disks whenN{body experiments (Miller, Prender-
gast & Quirk 1970, Hohl 1971, Ostriker & Peebles 1973)
revealed that disks with Q safely greater than 1 are prone
to large{scale bar{like instabilities.
Kalnajs (1971, 1977) developed the matrix method for

using linear perturbation theory to study the stability of
stellar systems. His method imposes no restrictions on
the forms of either the instability, or the unperturbed
stellar orbits. The matrix method is suÆciently complex
that it has not been widely used. Its �rst comprehen-
sive use was by Zang (1976) to study scale{free singular
isothermal disks. Some of his results are given in pa-
pers by his PhD supervisor Toomre (1977, 1981). Zang's
methods were re-used and extended by Evans & Read
(1998a,b) to scale{free disks with other power{laws. Or-
bits of any energy in a scale{free disk are simply scaled
versions of those at any other energy. Though this is in-
deed a simpli�cation, applications of the matrix method
even to scale{free disks are by no means simple.
We study stellar disks whose potentials are locally har-
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monic at their centers. We adopt Toomre's (1981) ter-
minology, and label these potentials as soft{centered, in
contrast to the sharp centers of the singular potentials
of scale{free disks. x2 contains new developments of the
matrix method. We show that this method generally
requires extra boundary integral terms when applied to
disks whose stars all circulate in the same direction. The
boundary integrals arise from near{radial orbits. We ex-
tend the linear perturbation theory to second order in
x2.3. Those results allow us later to study how modes
re-arrange the angular momentum and energy.
To understand the inuence of orbital populations on

the responses of the disks, we study a variety of disks.
That variety allow us also to study the e�ects of the mass
and extent of the disk. We use three axisymmetric poten-
tials for our disks; those of Kuzmin's disk, the isochrone
disk, and the soft{centered logarithmic potential. We use
known distribution functions (DFs) for the �rst two, but
none are currently available for cored exponential disks
embedded in the soft{centered logarithmic potential. We
construct some in Appendix C.
We give numerical results for modes of angular

wavenumber m = 2 in x3. Some of our models are the
same as those of others, and we compare results. Prior
work, some of which was done using N{body simula-
tions, includes that of Kalnajs (1978), Earn & Sellwood
(1995) and Pichon & Cannon (1997) for the isochrone
disk, and that of Athanassoula & Sellwood (1986, here-
after AS), Sellwood & Athanassoula (1986, hereafter
SA), Hunter (1992), Pichon & Cannon (1997), and Poly-
achenko (2004, 2005) for Kuzmin's disk. Vauterin & De-
jonghe (1996) studied modes of a cored exponential disk,
though in a di�erent potential, while Sellwood (1989)
studied the uncored and mildly singular exponential disk
in the same soft{centered logarithmic potential as ours.
Our numerical methods are described in Jalali & Hunter
(2005, hereafter JH).
We analyze our results in x4, and relate them to Poly-

achenko's (2004, 2005) uni�ed theory of bar{like and spi-
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ral modes. We summarize our �ndings in x5. Appendix
A shows how to pass from the usual Eulerian form of the
perturbation theory to its Lagrangian form, and how to
interpret the boundary integrals as boundary uxes.

2. PERTURBATION THEORY

This section presents the dynamical theory on which
our work is based. x2.1 carries out an Eulerian lin-
ear perturbation analysis of the collisionless Boltzmann
equation in action{angle variables, following Kalnajs
(1971,1977), to derive a matrix eigenvalue problem for
�nding modes. We apply this analysis in x2.2 to unidi-
rectional disks in which all stars circulate in the same di-
rection. We show that the matrix formulation may then
need additional boundary integral terms which have been
unjusti�ably ignored in some earlier work. We extend the
perturbation theory to second order in x2.3 to the extent
necessary to discuss the transfer of angular momentum,
and kinetic and potential energy. We discuss orbits and
Polyachenko's (2004, 2005) uni�ed theory in x2.4. In x2.5
we discuss the cutout functions which we have used in
some cases to generate stellar disks with central holes.

2.1. Linear Perturbation Theory

We study the stability of a collisionless stellar disk
composed of a distribution of stars moving in orbits
in a circularly symmetric potential V0(R). The unper-
turbed system is described by a DF f0(E;L) (Binney &
Tremaine 1987) where

E =
1

2

�
v2R + v2�

�
+ V0(R); L = Rv�; (1)

are the energy and angular momentum which remain
constant along an orbit. The density corresponding to
the unperturbed DF is

�D =

Z
f0dv; (2)

where dv denotes an element of the two-dimensional ve-
locity space. This density is the one that produces the
potential V0(R) only in the fully self-consistent case; in
our work it may provide only a part of that potential.
The development of the DF for the perturbed state is
described by the collisionless Boltzmann equation

@f=@t+ [f;H] = 0; (3)

where [; ] denotes a Poisson bracket and H is the Hamil-
tonian

H =
1

2

�
v2R + v2�

�
+ V (R; �; t): (4)

We expand the DF as f = f0 + f1 + f2 + � � � and the
Hamiltonian as H = H0 + V1 + V2 + � � �, where V =
V0 + V1 + V2 + � � � is the corresponding expansion of the
potential. Collecting terms of �rst and second orders
then gives the equations

@f1

@t
+ [f1;H0]=�[f0; V1]; (5)

@f2

@t
+ [f2;H0]=�[f0; V2]� [f1; V1]: (6)

It is necessary that the perturbed densities due to the
changes from the unperturbed DF are precisely those

needed to produce the corresponding components of the
perturbed density, so that

Vj(x; t)=�G
Z

�j(x
0; t)dx0

jx� x0j ; j � 0; (7)

�j(x; t)=

Z
fj(x;v; t)dv; j > 0: (8)

Here dx and dv denote elements of the two-dimensional
position and velocity spaces. Equation (7) is true when
j = 0 because we shall use �0 to denote the self-
consistent density for the potential V0. Equation (2)
replaces the j = 0 case of equation (8).
It is convenient to work with the actions

JR =
1

2�

I
vRdR; J� = L: (9)

of the unperturbed motion, and to express the un-
perturbed DF and Hamiltonian as f0(JR; J�) and
H0(JR; J�) respectively. The advantage of using action
variables is that their conjugate angle variables (�R; ��)
increase uniformly with time
d�R
dt

=
@H0

@JR
= 
R(JR; J�);

d��
dt

=
@H0

@J�
= 
�(JR; J�):

(10)
Perturbations must be periodic in the angles, and hence
have Fourier series in these angles (Kalnajs 1971). We
write them in the complex form

f1 = ei(m���!t)

1X
l=�1

~fl(JR; J�)e
il�R ; (11)

V1 = ei(m���!t)

1X
l=�1

~Vl(JR; J�)e
il�R ; (12)

with the understanding that it is their real parts which
give the physical solution. Following Landau (1946), we
suppose that the frequency ! is complex with real and
imaginary parts

! = m
p + is; (13)

with 
p representing an angular pattern speed and s a
growth rate. We suppose initially that s > 0 so that
we have a growing disturbance which was in�nitesimally
small in�nitely long ago. The possibility of stationary
oscillations and real values of ! has to be considered via
analytical continuation to s = 0 from s > 0.
The solutions (11) and (12) are those for a single

angular wavenumber m. Perturbations of all angular
wavenumbers are possible, but do not interact at the �rst
order when, as here, the unperturbed state is axisymmet-
ric. In fact we shall be concerned almost entirely with
the case of m = 2.
Substituting expansions (11) and (12) into equation (5)

and matching Fourier coeÆcients yields the relation

~fl(JR; J�) =
~Vl(JR; J�)

l
R +m
� � !

�
l
@f0

@JR
+m

@f0

@J�

�
: (14)

The potential V1, and the density �1 which causes it
and is obtained from integrating f1 as in equation (8),
can also be expanded in position space as

V1= e
i(m��!t)

1X
j=0

cj 
m
j (R); (15)

�1= e
i(m��!t)

1X
j=0

cj�
m
j (R); (16)



UNSTABLE BAR AND SPIRAL MODES OF DISK GALAXIES 3

where  mj (R) and �
m
j (R) are a complete set of real basis

functions, and cj are constant coeÆcients. We multi-

ply equation (16) by ei(!t�m�) mj (R) and integrate over
position space to get �1k=0Djkck, where

Djk(m) = 2�

1Z
0

 mj (R)�
m
k (R)RdR; (17)

are the components of a constant matrix D(m). It is
diagonal if  mj and �mk form a biorthogonal set. Alter-

natively, we can rewrite �1 using its integral (8), and
then carry out the integration over phase space using ac-
tion and angle variables. This requires that we calculate
Fourier coeÆcients of the basis potential functions

	m
l;j(JR; J�)=

1

�

�Z
0

 mj (R)

� cos[l�R +m(�� � �)]d�R; (18)

~Vl=

1X
j=0

cj	
m
l;j ; (19)

(Kalnajs 1977; Tremaine & Weinberg 1984). Using equa-
tion (14) to relate the Fourier coeÆcients of f1 to those
of V1 yields

[M(m;!)�D(m)]c = 0; (20)

where the components of the matrixM(m;!) are de�ned
as

Mjk

4�2
=

1X
l=�1

1Z
0

dJR

1Z
�1

�
l @f0
@JR

+m @f0
@J�

�
l
R +m
� � !

	m
l;j	

m
l;kdJ�;

(21)
with integration over the whole of action space. We
suppose that the integrand decays suÆciently rapidly as
JR ! 1 and J� ! �1 for convergence. The linear
equations (20) have a non-trivial solution for the coeÆ-
cient vector c only if

M(m;!) � jM(m;!)�D(m)j = 0: (22)

This determinantal equation de�nes a nonlinear eigen-
value problem for !. Once ! is found, its eigenvector c
gives the physical shape of the perturbation.

2.2. Boundary Integrals

The DF of a unidirectional disk for which all the stars
rotate in the prograde direction has the form

f0(JR; J�) = fP0 (JR; J�)H(J�); (23)

where H is the Heaviside function. The derivative of this
DF with respect to J� is

@f0

@J�
=
@fP0
@J�

H(J�) + fP0 (JR; 0)Æ(J�): (24)

The matrix M(m;!) then has two components

M(m;!) =M
A(m;!) +M

B(m;!); (25)

whose elements are

MA
jk

4�2
=

1X
l=�1

1Z
0

dJR

1Z
0

�
l
@fP
0

@JR
+m

@fP
0

@J�

�
l
R +m
� � !

	m
l;j	

m
l;kdJ�;(26)

MB
jk

4�2
=

1X
l=�1

1Z
0

dJR

"
mfP0 (JR; 0)	

m
l;j	

m
l;k

l
R +m
� � !

#
J�=0

: (27)

Because 
� = 
R=2 for radial orbits, the denominator of
the boundary integral (27) reduces to �! for l = �m=2
when m is even. Modes with ! = 0 are therefore pre-
cluded when fP0 (JR; 0) 6� 0.
The DF (23) also drops abruptly to zero at the circu-

lar orbit limit JR = 0 so that one should also include an
extra H(JR) factor in the DF. Di�erentiation of f0 with
respect to JR = 0 then gives a Æ(JR). However it gives
no boundary integral, regardless of the value of f0 at
JR = 0. The reason is that its integrand, for which the
mfP0 (JR; 0) of equation (27) is replaced by lfP0 (0; J�),
vanishes at JR = 0. That is because the Fourier coeÆ-
cients 	m

l;j(0; J�) vanish for all l 6= 0 because orbits with
JR = 0 are circular, and the non-zero l = 0 Fourier coef-
�cient is annulled by its factor l. Hence the simpler form
(23) of the DF suÆces.
The boundary integral (27) does not arise if the unper-

turbed DF contains no radial orbits so that fP0 (JR; 0) =
0. This is the case for the unidirectional DFs used by
Zang (1976) and Evans & Read (1998a,b) because their
DFs contain positive powers of L = J� as factors, and
hence contain no radial orbits. As Gerhard (1991) dis-
cusses for the analogous problem of spherical systems,
most DFs for soft{centered potentials which produce �-
nite densities in their centers tend to isotropy there and
so have radial orbits. His reasoning applies to thin disks
too. Only orbits with low angular momenta penetrate
near the center, and the only alternative to radial orbits
is a singular distribution of non-radial orbits, as when
all orbits are circular. The need for radial orbits to pro-
vide a non{zero central density disappears if the density
of the stellar disk drops to zero in the center, as it does
with the cutouts which we discuss in x2.5.
The omission of the boundary integral terms (27) by

Hunter (1992) invalidates his results. As we shall see in
x3.1, the e�ect is substantial. Pichon & Cannon (1997)
con�rmed Hunter's results, but they repeated his error.
We show in Appendix A that the omission means neglect-
ing the contributions to potential energy and angular mo-
mentum due to the perturbation of radial orbits. Bound-
ary integrals are avoided if one uses a Lagrangian in-
stead of an Eulerian perturbation theory (Kalnajs 1977).
The two forms of the theory are complementary and Ap-
pendix A also shows how relevant Lagrangian results can
be derived simply from the Eulerian theory. That anal-
ysis does not apply to the quite di�erent version of La-
grangian theory used by Vandervoort (1999).

2.3. Angular Momentum and Energy

The perturbations to angular momentum and energy
are of second order, and so their calculation requires sec-
ond order terms from (6). Summing the contributions
from all elements in phase space gives

L =

ZZ
J�fdJd�; (28)

for the total angular momentum, and

K =
1

2

ZZ
(v2R + v2�)fdJd�; (29)

for the total kinetic energy. To compute the gravitational
energy, we must distinguish between the part V D

0 of the
unperturbed gravitational potential V0 which is due to
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the stars of the disk, and the remainder V ext
0 which is

provided by some other and external source. The per-
turbational terms Vj , j > 0, of the potential all arise
from the perturbed DF, and so all belong to the self-
gravitational potential. The double contribution of the
external potential to the gravitational energy is taken
care of by writing it as

W =
1

2

ZZ
(V + V ext

0 )fdJd�: (30)

The leading corrections to these quantities due to the
perturbations are of second order because all the �rst
order terms vanish when integrated over ��. They are

L2=
ZZ

J�f2dJd�; (31)

K2=

ZZ
(H0 � V0)f2dJd� = K2;1 +K2;2; (32)

after using the zeroth order part of equation (4) to sub-
stitute for the velocities, and, because V ext

0 = V0 � V D
0 ,

W2=
1

2

ZZ
(V2f0 + V1f1 � V D

0 f2 + 2V0f2)dJd�;

=
1

2

ZZ
f1V1dJd� +

ZZ
V0f2dJd�;

=W2;1 +W2;2: (33)

The component W2;2 = �K2;2 because their de�ning in-
tegrals match. The step to the second line of equation
(33) uses the fact that the �rst and third terms on the
�rst line cancel. This is seen by transforming the integra-
tions to (x;v) space, and then using equations (2), (8)
for j = 2, and Poisson integrals like (7) to relate poten-
tials to densities, to express them as identical integrals
of the product of the densities �D and �2.
The simplest integral to calculate is that for the �rst

component ofW2;1 in equation (33). As we noted earlier,
the physical parts of our solutions are given by the real
parts of our complex solutions. The real parts of f1 and
V1 are given by the sums

1
2
(f1+ �f1) and

1
2
(V1+ �V1), where

a bar denotes a complex conjugate. Therefore

W2;1=
1

8

ZZ
(f1 + �f1)(V1 + �V1)dJd�;

=
1

8

ZZ
(f1 �V1 + V1 �f1)dJd�;

= e2st
1X

l=�1

W l
2;1; (34)

where the components W l
2;1 are de�ned by

W l
2;1=�

2

Z
dJ

�
l
@f0

@JR
+m

@f0

@J�

�

� [l
R +m(
� �
p)]j ~Vlj2
jl
R +m
� � !j2 : (35)

We have used here, and will again, the fact that the
only products which do not vanish on integration over
�� are those which pair a conjugate with a non-conjugate
quantity.
We show in appendix B that

L2(t) = e2st
1X

l=�1

Ll2; K2;1(t) = e2st
1X

l=�1

Kl
2;1; (36)

where the components of these sums are de�ned by the
integrals

Ll2=�m�2
Z

dJ

�
l
@f0

@JR
+m

@f0

@J�

�

� j ~Vlj2
jl
R +m
� � !j2 ; (37)

Kl
2;1=��2

Z
dJ

�
l
@f0

@JR
+m

@f0

@J�

�

� (l
R +m
�)j ~Vlj2
jl
R +m
� � !j2 : (38)

To each of the area integrals (35), (37) and (38) must be
added the boundary integrals given by the delta function
term of equation (24) for the prograde DF (23). The
integrals can be combined to give the simple relation

Kl
2;1 +W l

2;1 = 
pL
l
2; (39)

between the separate components. Although each of
these components can be found directly from the �rst
order solution, computing W2;2 = �K2;2 requires more,
as we show in Appendix B.
The second order corrections L2 and W2;1 to the an-

gular momentum and gravitational energy have simple
representations in terms of the real and imaginary parts
of the matrix M = MR + iMI. Combining equations
(37) and (35) with expansion (19), we get the quadratic
forms

L2(t)=�m
4s
e2st�cTMIc; (40)

W2;1(t)=
1

4
e2st�cTMRc; (41)

where the superscript T denotes transposition of the col-
umn vector c to generate a row vector. These expressions
are real because the matrix M is symmetric. Moreover
multiplying equation (20) by �cT and separating real and
imaginary parts (D is also symmetric) gives

�cTMRc = �cTDc; �cTMIc = 0: (42)

The second relation shows that L2(t) = 0, which it
must be because the disk is not subject to any exter-
nal torques, and hence its angular momentum is con-
served. There is no such restriction on sizes of the sep-
arate Fourier components represented by the terms for
di�erent l in the sum (36), other than that they must
sum to zero. Similarly the sizes of the di�erent compo-
nents of the potential and kinetic energy vary, because
only the total energy E is constrained to be zero, with
E2(t) = K2(t) +W2(t) = 
pL2(t) = 0. Hence the two
components of the kinetic and potential energy are re-
lated in the same way:

K2;1(t) = �W2;1(t); K2;2(t) = �W2;2(t): (43)

The fact that the second order components grow twice
as fast as those of �rst order is not paradoxical. It re-
ects the fact that our analysis can describe only the
early stages of the growth of an instability. If we intro-
duce a small ordering parameter " into our expansion
f = f0 + "f1 + "2f2 + � � � of the DF to measure the size
of the perturbation relative to that of the unperturbed
state, then we see that the linearization breaks down,
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Fig. 1.| The orbital frequency space of the soft{centered loga-
rithmic potential (53) in units of v0=RC. The curves are contours of

constant E in equal steps in e�E . They show that 
R depends only
weakly on the angular momentum L, which varies from zero on the
radial orbit boundary 
� = 0:5
R, to Lc(E) on the curved upper
circular orbit boundary. Similarly narrow lens-shaped plots are ob-
tained for other soft{centered potentials. When normalized to the
same frequency range as here, the largest value of 
i = 
��
R=2,
which is 0:106 here, is 0:130 for Kuzmin's disk and 0:119 for the
isochrone. 
R depends only on E for the isochrone, so that curves
of constant E are then exactly straight.

and our analysis is unreliable, after a time t such that
"est = O(1). The second order components are then of
magnitude "2e2st, which is also O(1). Our perturbation
theory has then ceased to be valid. It is useful only when
our expansion is well-ordered, that is for times for which
"est is small.

2.4. Orbits and Polyachenko's Uni�ed Theory

Figure 1 shows an orbital frequency space for pro-
grade orbits. Its shape is characteristic of those of other
soft{centered potentials. The upper curved boundary
is formed by circular orbits for which 
R = �(R) is
the epicyclic frequency. The straight lower boundary is
formed by radial orbits for which 
� = 
R=2. The slim-
ness of the region in between these boundaries, where
all the intermediate orbits lie, shows how limited is the
range of


i = 
� �
R=2; (44)

for orbits of all geometrical shapes.
Polyachenko's (2004, 2005) uni�ed theory of bar{like

and spiral modes supposes that global galactic structure
can be understood in terms of low frequency modes for
which j
p � 
ij is small. Lynden-Bell (1979) showed
that orbits which he classi�ed as abnormal then align
with, and hence support, bar{like perturbations. Poly-
achenko (2004) shows further that the Fourier series (11)
for the perturbed DF is then given to leading order by
the single l = �1 component. This approximation is
equivalent to dropping all but the l = �1 term from the
matrix M(2; !). We test its accuracy by comparing the
pattern speeds using it with those obtained from the full
matrix; the results are listed in the rightmost columns of
our tables. Polyachenko �nds eigensolutions by a di�er-
ent method, which has the advantage that he is able to
derive a linear eigenvalue problem for !, albeit one which
must be solved for an unknown function of the two action
variables. The calculations in Polyachenko (2005) add in
additional l values, most importantly l = 0 and l = 1.

2.5. Disks with Central Holes

Kormendy (1977) proposed modeling stellar disks with
an inner{truncated exponential so that they have holes
in their centers. We construct such disks by applying a

cutout function Hcut(L) to change an unperturbed DF
f0(E;L) toHcut(L)f0(E;L). In so doing, we assume that
the part of the gravitational potential which the cutout
stars had previously provided, is instead provided by a
central bulge which is so hot that it does not respond to
disturbances in the disk.
Cutouts were introduced �rst in Zang's (1976) pioneer-

ing study of the singular scalefree logarithmic potential.
His purpose was to eliminate stars with short dynamical
time scales and high dynamical frequencies. Dynamical
frequencies are bounded in soft{centered potentials are
bounded (cf Figure 1) and so avoid that problem. With
some models, we apply a cutout function

Hcut(L) = 1� e�(L=L0)
2

; (45)

where L0 is some angular momentum scale. Like Zang's,
it removes stars for which L is signi�cantly less than L0,
but has no e�ect on stars with L � L0. It removes
stars on radial and near{radial orbits, as well as stars of
low energy because they too have low angular momenta.
The result of the cutout (45) is to give an active surface
density

�act =

Z
Hcut(L)f0(E;L)dv; (46)

which tends to zero at the center, and hence models a
central hole. No boundary integrals (27) arise for such
cutout unidirectional disks because their unperturbed
DF vanishes at L = 0. The active densities correspond-
ing to the cutout (45) is shown in several Figures. They
show that it truncates far less sharply than Kormendy's
exponential.

3. M=2 MODES OF DISKS

This section presents our numerical results. We have
found two modes for most models. Classifying them is
less straightforward than it is for simpler physical sys-
tems, for which the fundamental mode has the lowest fre-
quency and simplest structure, and modes of successively
higher order have higher frequencies and more complex
structure. The most important instability is that with
the highest growth rate. Often it also has the simplest
structure. However, we �nd that small changes in the
orbital population have a much greater e�ect on relative
growth rates than they do on radial structure, with the
result that the mode with the simplest structure is not
always the fastest growing. For that reason we choose
structure as our criterion for determining which modes
are fundamental and which secondary. We label them 1
and 2 respectively.
We display contour plots of the perturbed density

�1 = P (R) cos [2�� !t+ #(R)] ; (47)

obtained from the real part of equation (16). The phase
#(R) is arbitrary to within an additive constant because
eigenvectors are arbitrary to within a complex constant
multiple, and so modes are oriented arbitrarily. We draw
only the contours for positive perturbed density; those
for negative levels have the same pattern rotated by 90Æ,
and occupy the blank sectors. The levels of the contours
are in steps of 10% of the maximum of �1 from 10% to
90%. The length scale of all plots is that of the core
radius RC of the potential.
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Solid and dotted circles on the contour plots mark the
radii RCR and ROLR of circular orbits in co-rotation reso-
nance (CR) and outer Lindblad resonance (OLR) respec-
tively with a neutral s = 0 mode with the pattern speed

p of that mode. All pattern speeds are too large for
there to be an inner Lindblad resonance (ILR). Orbits
of any shape, not just circular ones, may be resonant.
For example, the orbits which are in a CR with a pat-
tern speed 
p are those which lie on the horizontal line

� = 
p which cuts through the lens-shaped region of
Figure 1. They are spread out in space and not con�ned
to one speci�c circle. They are more concentrated near
that circle when most orbits are near{circular, but not
otherwise. Similarly the orbits in an OLR are those for
which 
� = 
p � 
R=2, and lie on a line through Fig-
ure 1 with slope �1=2. They too range from circular to
radial. They have lower orbital frequencies than those
in the CR because they lie further out in the disk. An
ILR can occur only for the limited range of 
p values
for which the line 
� = 
p + 
R=2 of slope 1=2 inter-
sects the lens-shaped region of Figure 1. Our unstable
modes with growth rates s > 0 have no resonances, only
near{resonances at which the denominators of the matrix
components (21) are small when s is small.
We next plot the radial variations of the amplitude

P (R) of the perturbed density (full curve) and the un-
perturbed density (dashed curve). Below this is a bar
chart which displays the Fourier components Ll2, K

l
2;1

and W l
2;1. They are evaluated after normalizing the

eigenvector c so as to make the positive and negative
components of e�2st
pL2 sum to �1 respectively. We
�nd that K2;1 is always positive. This does not neces-
sarily imply that all modes release gravitational energy
and convert it to kinetic energy. Such a release occurs
only if the sum of the two components K2;1+K2;2 is pos-
itive. Its sign follows from the tabulated values of the
ratio K2;2=K2;1. A mode converts gravitational energy
to kinetic energy if this ratio exceeds -1, and vice versa
if the ratio is less than -1. There is no conversion if the
ratio is exactly -1.

3.1. Kuzmin Disks

The potential of Kuzmin's disk is

V0(R) = � GMp
R2 +R2

C

; (48)

where RC is the core radius (Kuzmin 1956, Binney &
Tremaine 1987). We describe modes of two classes of
self-consistent DFs, in units in which G =M = RC = 1.

Miyamoto Models

Miyamoto (1971) models have a single parameter nM.
The orbital population becomes more nearly circular
with increasing nM, and ultimately cold in the limit
nM ! 1. We use models for which all orbits circulate
in the same direction (Hunter 1992).
The frequencies of the fundamental modes for the self-

consistent (L0 = 0) disks in Table 1 di�er substantially
from those given by Hunter (1992) and Pichon & Cannon
(1997). Those results omit the boundary integral MB

and are incorrect. Neglecting MB gives a pattern speed
of 
p = 0:357 with RCR = 1:717 and a growth rate of

s = 0:295 for nM = 3. The true fundamental mode of the
nM = 3 model is the compact and rapidly growing cen-
tral bar shown in Figure 2a, not the larger bar shown in
Figure 11 of Pichon & Cannon. The amplitude P (R) of
its perturbed density in Figure 2c has a single peak. The
secondary mode is slower growing, slower propagating,
and more extensive. It has a double{peaked amplitude,
and a more spiral structure which is also largely con�ned
within the CR circle. It is plotted in JH and resembles
the secondary mode shown in the right panels of Fig-
ure 3. Growth rates and pattern speeds increase with
increasing nM, modes become increasingly centrally con-
centrated, and theW2;2 terms reinforce the transfer from
gravitational to kinetic energy.
The bar chart in Figure 2e displays a standard pattern

which is common to all but two of those we show. We
show in x4.1 how this pattern can be understood from the
formulae of x2.3. Angular momentum is lost by the l < 0
Fourier components, primarily l = �1, and gained by
the l � 0 components. All Fourier components loseW2;1

gravitational energy, much from the l = �1 component,
while all components gain K2;1 kinetic energy except for
l = �1. Every bar chart shows that a few Fourier com-
ponents are signi�cant for most of the transfer of angular
momentum and energy.
The second block of results in Table 1 shows the ef-

fect of applying the cutout function (45) with L0 = 0:2
to the same models. The removal of many low angular
momentum orbits reduces the active mass of the disk by
a little more than 10%. Its density now drops gradually
to zero in the center, but there is no sharp barrier. The
e�ect on the fundamental mode is large, as the right pan-
els of Figure 2 show. Its amplitude is still single peaked,
though that peak has moved out to R � 0:4. The mode
now rotates so rapidly that no orbits are in CR, and it
extends out to the OLR circle. Its bar chart is quite dif-
ferent, but is similar to that of Figure 11e for another
fundamental mode of a cutout disk. The l = �1 compo-
nents are small, and the ow of angular momentum and
K2;1 is from the l < 1 components, primarily l = 0, and
to the l � 1 components, primarily l = 1.
The cutout reduces the growth rate of the fundamen-

tal mode so much that it no longer grows fastest. The
now faster growing secondary mode is changed much
less. The cutout smoothens its spiral, and moves its two
humps outwards. The inner hump in the region where
there is large mass reduction, is diminished relative to the
outer hump. The cutout a�ects the fundamental mode so
much more than the secondary mode because of its large
e�ect on the more central orbits which are the major
participants in the fundamental mode but not in the sec-
ondary mode. Both modes of the cutout nM = 3 model
atypically induce a transfer from kinetic to gravitational
energy.
The results for higher nM are similar. None of the fun-

damental modes have CRs. The pattern speeds of sec-
ondary modes decrease, though not enough for there to
be ILRs. All growth rates are decreased, though the fun-
damental mode is still, though barely, the faster growing
for nM = 7. As nM increases and orbits become more
circular, the relative proportion of angular momentum
absorbed by the l = 1 component of the secondary modes
increases.
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Fig. 2.| The left panels show the fundamental mode of the self-consistent nM = 3 Miyamoto model for Kuzmin's disk. The right panels
show how an L0 = 0:2 cutout changes that mode. Here and below, the top panels show positive contours of the perturbed density �1, in
steps of 0:1�1. The solid and dotted circles mark the co-rotation and outer Lindblad resonance circles. The middle panels show the wave
amplitude (solid line and left scale) and unperturbed density (dashed line and right scale). The bottom panels show Fourier components
of kinetic energy (grey bars), gravitational energy (white bars), and angular momentum (thin bars).

Table 1. Eigenvalues for m = 2 modes of unidirectional Miyamoto

models for Kuzmin's disk.

Full Model l = �1 only

nM L0 Mact mode 
p s K2;2=K2;1 RCR ROLR 
p

3 0 1.000 1 0.825 0.939 1.58 0.541 1.296 0.649
3 0 1.000 2 0.418 0.265 1.88 1.483 2.246 0.270

5 0 1.000 1 0.913 1.216 1.61 0.359 1.176 0.738
5 0 1.000 2 0.530 0.409 1.86 1.154 1.878 0.323

7 0 1.000 1 0.963 1.465 2.58 0.227 1.115 0.805
7 0 1.000 2 0.643 0.588 2.64 0.895 1.609 0.372

3 0.2 0.868 1 1.023 0.114 -3.26 � � � 1.045 � � �
3 0.2 0.868 2 0.336 0.203 -1.67 1.811 2.632 0.259

5 0.2 0.882 1 1.049 0.222 0.53 � � � 1.017 � � �
5 0.2 0.882 2 0.384 0.259 -0.64 1.607 2.390 0.294

7 0.2 0.892 1 1.067 0.311 1.27 � � � 0.997 � � �
7 0.2 0.892 2 0.430 0.302 -0.17 1.443 2.200 0.321
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Fig. 3.| The fundamental mode (left panels) and secondary mode (right panels) of a tapered mK = 6, Jc = 0:25, AS model with 4.6%
of its orbits retrograde.

Table 2. Eigenvalues for m = 2 modes of AS modified Kalnajs models

for Kuzmin's disk

Full Model AS Pola l = �1 only

mK � Jc Mretro mode 
p s K2;2=K2;1 
p s 
p s 
p

4 0 0.40 0.084 1 0.335 0.174 1.83 0.168 0.020 � � � � � � 0.193
4 0 0.40 0.084 2 0.175 0.016 -1.05 � � � � � � � � � � � � 0.144

6 0 0 0 1 0.746 0.711 1.42 � � � � � � � � � � � � 0.569
6 0 0 0 2 0.358 0.161 0.60 � � � � � � � � � � � � 0.240

6 0 0.25 0.046 1 0.445 0.308 0.52 0.233 0.066 � � � � � � 0.264
6 0 0.25 0.046 2 0.294 0.109 1.85 0.165 0.058 0.24 0.058 0.207

6 3 0.60 0.154 2 0.158 0.027 -4.00 0.145 0.014 0.14 0.02 0.144
8 4 0.90 0.160 1 0.199 0.064 -1.47 0.173 0.035 � � � � � � 0.174

aPolyachenko (2004, 2005)
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Fig. 4.| The left panels show the fundamental mode of the mK = 4 AS model, tapered with Jc = 0:4 and with 8:4% of its orbits
retrograde. The right panels show our computed mode for their � = 3, mK = 6, Jc = 0:6 model with 15:4% retrograde orbits.

Kalnajs Models

Toomre's stability parameter Q increases monotoni-
cally outwards for Miyamoto models. Kalnajs (1976)
models, which also depend on an integer parameter mK

which increases as the models cool, keep Q almost con-
stant. SA modi�ed these models with the addition of
two extra parameters: an angular momentum Jc and
�. A fractional mass Mretro with angular momenta in
the range (0; Jc) have their rotations reversed, follow-
ing equation (5) of Zang & Hohl (1978). This gives a
smoothly tapered DF, and eliminates the discontinuity
of the unidirectional model. Table 2 gives our results for
several AS models, and also a unidirectional mK = 6,
Jc = 0 model which is new. The fundamental mode of
the latter has not been plotted because it is a compact
and rapidly rotating bar, a little larger, but otherwise
just like that shown in the left panels of Figure 2. The
left panels of Figure 3 show how much that compact bar
is modi�ed by a Jc = 0:25 tapering which reverses less
than 5% of the orbits. Like the cutout, tapering makes
the fundamental mode smoother, more spiral, more ex-
tensive, and reduces its growth rate. But the taper di-

minishes the pattern speed, whereas the cutout increases
it. Both tapering and cutout cause a large change in
the low angular momentum orbits which dominate in the
center of the disk where the fundamental mode is concen-
trated. Whereas the cutout removes many of them, the
tapering merely reverses some rotations, and makes the
DF isotropic for jLj � Jc. The secondary mode in the
right panels of Figure 3 has the usual double peak, and
more extensive and spiral form. It resembles that for the
same model shown in Figure 1 of Polyachenko (2005).
The fundamental mode for the tapered mK = 4,

Jc = 0:4 model is one of the few for which SA plot a
mode shape. The major di�erence between their Fig-
ure 5b and our Figure 4a is that theirs is less spiral and
has some central structure which our Figure 4a lacks.
This mode is less spiral than that of the cooler and more
sharply tapered disk shown in Figure 3a, and there is a
remarkable dearth of angular momentum transferred to
its l = 1 component.
A positive value of � removes orbits with low energies

and angular momentum high relative to Lc(E), and adds
to those with higher energies and lower angular momen-
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tum. It is easy to show from their Appendix A that

f0(E; 0) =
(mK � 2�E2

s )

2�2
exp[(�(1�E2

s )]; Es =
RCE

GM
:

(49)
The value of � can not exceed mK=2 because f0 is then
negative at the center of the disk where the scaled en-
ergy Es = �1. Many of AS's models have marginal
values � = �mK=2. Their f0 values peak at interme-
diate values of Es. The (mK; �; Jc) = (6; 3; 0:6) model
is one to which Polyachenko (2004) applied his simpli-
�ed theory. Our Figure 4b shows the same concentrated
central structure as in Polyachenko's Figure 6, but his
plot has a stronger second hump around R = 1 than our
weaker one, and lacks the extended outer spiral that we
�nd. The structure of this mode suggests that it is a sec-
ondary one, though it is the only one we have found. It is
closer to having an ILR than any other mode in our sur-
vey. Figure 4f is noteworthy for its large negative l = �1
component of K2;1; these components are usually small.
This mode is one which converts kinetic to gravitational
energy.
Table 2 shows discrepancies between our results and

those of AS and Polyachenko. Some discrepancies be-
tween matrix theory and simulations with �nite numbers
of particles and gravity softening are to be expected. Fur-
ther comparisons showed that discrepancies increase as
Jc decreases. This leads us to suspect that they are due
in large part to the marked sensitivity to the population
of near{radial orbits; note how much the mK = 6 mode
changes between Jc = 0 and Jc = 0:25. We found also
that eigenvalues are sensitive to the accuracy with which
the central regions are handled. Results for isochrone
disks in Table 3 below are in excellent agreement with
those of others. These models do not have tapers. SA
found the mode of a cold disk accurately, but its orbits
are all circular and not at all radial.

3.2. Isochrone Disks

The isochrone disk has the potential

V0(R) = � GM

RC +
p
R2 +R2

C

; (50)

where RC is again its core radius. We again use units
in which G = M = RC = 1. Kalnajs's (1976) self-
consistent models for this disk contain an integer param-
eter mK which increases as the models cool. They have
fairly uniform values of the Toomre's Q. Some stars are
reversed to become retrograde according to the prescrip-
tion given in equation (13) of Earn & Sellwood (1995).
Combining that with the x! 0 limit of equation (26) of
Kalnajs (1976) and using Gradshteyn & Ryzhik (1980)
formula (7.126.1) gives

f0 =
mK

6�2 [1 + JR + jJ�j]2mK�2
; J� < 0; (51)

for the DF of retrograde stars. There are now retrograde
stars of all angular momenta, not the limited ranges of
the models of x3.1. Integration over phase space gives

Mretro =
mK

3(mK � 2)(2mK � 3)
; (52)

for their fractional mass.
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Fig. 5.| The parameter space for cored exponential disks (54)
in the soft{centered logarithmic potential (53). Only models on or
below the solid line have physically possible spherical halos with
density �H � 0 at all radii.

Table 3 compares results; the agreement is now grat-
ifyingly close. Both pattern speeds, growth rates, and
spirality increase with increasing mK, as they do with
Miyamoto models with increasing nM. Again there are
no ILRs. ILRs occur only when 
p < 0:0593 in our units,
for which the ranges of both 
R and 
� are only a half
of what they are in Figure 1.
The wave patterns for the two modes for mK = 12

are displayed in Earn & Sellwood's Figure 1 and also
in JH. As usual, the secondary mode is more extended
than the fundamental, and the amplitude of its spiral
arm is two{peaked, versus the single peak of the funda-
mental mode. Our bar charts, which are given in JH,
show that the l = 1 component absorbs much more an-
gular momentum and kinetic energy than the l = 0. This
is di�erent from Figure 3, but is in line with the trend we
noted with Miyamoto models with increasing nM. The
secondary mode of the warmest mK = 6 model is the
only one for which kinetic is converted to gravitational
energy. The mode in Figure 15 of Vauterin & Dejonghe
(1996), for a model which also has some retrograde orbits
though a di�erent DF and potential, is well matched by
the fundamental mode of the mK = 9 isochrone.

3.3. Exponential Disks

The soft{centered logarithmic potential, widely used in
galactic studies because of its near{at rotation curve, is

V0(R) = v20 ln
q
1 +R2=R2

C; (53)

where v0 is the at rotation velocity, and RC is the core
radius. Densities of the stellar disks of spiral galaxies
are found to decay exponentially with distance (Freeman
1970), and are quite unlike the self{consistent density for
the potential (53), given in equation (51) of JH, which
decays only as R�1 at large distances like the singular
Mestel (1963) disk. We study disks with densities

�D(R) = �s exp

�
��

q
1 +R2=R2

C

�
; � = RC=RD;

(54)
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Fig. 7.| (a) Circular velocity (solid line) and mean rotation velocities of the exponential disk. Dashed, dot-dashed, dotted and
long-dashed lines respectively show the mean rotation velocity hv�i of exponential disks with N = 2, 4, 6 and 8. All curves are for

RC = RD = v0 = 1. (b) Toomre's Q for the exponential disk for RC = 1 with N = 2 (thin lines) and N = 6 (thick lines). Solid, dashed
and dot-dashed lines here correspond to (RD;G�sRD) = (0:5; 0:6), (1; 0:42) and (2; 0:32), respectively as in Figure 6.
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Fig. 8.| Modes of the exponential disk for N = 6, RD = 1, and �sRD = 0:42. The left panels are for the fundamental mode, and the
right panels are for the secondary mode.

models. We varied them, and so now restrict exponential
disk models to the single case of N = 6 so as to study
the consequences of varying other parameters. As Figure
7b shows, Toomre's Q for N = 6 is close to unity over a
substantial central part of the disk, whose size increases
with RD when RD � 1.
Table 4 lists two modes for six di�erent N = 6 models.

It lacks values of the ratio K2;2=K2;1 because we were un-

able to compute accurate values of W2;2 with our chosen
basis functions, which are those of Clutton-Brock (1972),
and Aoki & Iye (1978). They �nd modes well, but the
R�3 decay of their �0j coupled with the growth of the
logarithmic potential V0 causes the integrals in the sum
(B17) to grow slowly with increasing j.
Figure 8 shows two modes of the �rst RD = 1, �sRD =

0:42, model. The fundamental mode is a rapidly rotating
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Fig. 9.| The secondary mode of an N = 6 exponential disk of
larger extent with RD = 1:6 and �sRD = 0:34.

bar con�ned within the CR circle, and resembles that of
the Kuzmin disk in Figure 2a. The secondary mode has
a lower pattern speed and growth rate, a spiral form,
and its amplitude has the usual two peaks within the
CR circle. Its bar chart is remarkable for its small l = 0
components.
The �rst four models of Table 4 follow the e�ect of

varying RD. The parameter �sRD changes too so as
to remain within the physically allowed region of Fig-
ure 5. Its values are near marginal in that they are
approximately 90% of their allowed maximum. Despite
the decrease of �sRD, the total disk mass grows as its
scale length RD increases, though, as Figure 6 shows, the
halo/bulge grows in importance as RD decreases, and the
disk becomes progressively less maximal. The structure
of the fundamental bar mode does not change along this
sequence; it remains a compact and rapidly rotating cen-
tral bar. Figure 9 for the larger RD = 1:6 shows that the
amplitude of the secondary mode has developed a third
hump. This development occurs around RD � 1:25, and
seems to be related to the anomalously low growth rate
at RD = 1:2 (See Table 4). The bar chart of Figure 9c
for RD = 1:6 shows much larger l = 0 components than
Figure 8f.

Figure 10 illustrates how decreasing �s and hence the
mass of the disk, whilst keeping its length scale RD �xed,
stabilizes the disk. The transition of the fundamental
mode from stability to instability appears to take place
through a pitchfork bifurcation; that of the secondary
mode through a tangent bifurcation. The order in which
the two modes are stabilized is di�erent for the two dif-
ferent values of RD. When, as here, �sRD is decreased
at a �xed RD, then the part of the rotational velocity due
to the halo/bulge components increase from those shown
in Figure 6. The stabilization shown in �gure 10 is there-
fore similar to that which is achieved by suÆciently mas-
sive halos (Kalnajs 1972, Ostriker & Peebles 1973, Hohl
1975). Decreasing �s boosts the X of Toomre's (1981)
swing{ampli�er theory to about 1:6 and 2:3 respectively
at the CR circle when the fundamental and RD = 1 sec-
ondary modes are stabilized. The stabilizing value of X
varies with the shear �, which is 0:6 and 0:8 at the CR
circle in the two cases.
The stabilization of both modes in the neighborhood

of �sRD � 0:3 for both RD = 1 and RD = 1:6 suggests
that the stability boundary approaches the boundary of
the physically feasible region plotted in Figure 5 as RD

increases, i.e. as � decreases. It raises the possibility that
the two boundaries intersect before the �! 0 limit of an
exponential disk in a singular logarithmic potential, for
which �sRD = 0:304 is reached. Our current computer
algorithms are not capable of approaching that limit, but
they do show the RD = 2 disk to be quite stable. This
suggests that the classical exponential disk (� = 0) with
a completely at rotation curve (RC = 0) may be sta-
ble against bisymmetric excitations. This disk is much
less than maximal because the everywhere at rotation
curve requires a substantial contribution from a spherical
central bulge/halo.
The �nal Figure 11 and the last two models of Ta-

ble 4 show again the large e�ects of cutting out a small
fractional mass of low angular momentum orbits. The
e�ects are similar those we found in x3.1 for Miyamoto
disks. Comparison with Figure 8 shows that the funda-
mental mode is changed much more than the secondary
one. Its growth rate is diminished substantially, and its
pattern speed is increased so much that there is no longer
a CR circle. It is more spiral and extensive and its peak
amplitude has moved out from the region of diminished
density. Its bar chart has undergone a large change and
now resembles that of Figure 2f with small l = �1 com-
ponents and the ow of both angular momentum and
K2;1 is primarily from l = 0 to l = 1. The more exten-
sive secondary mode is changed much less by the cutout,
though the inner hump of its amplitude has almost dis-
appeared. The l = 0 components are again signi�cant in
the bar chart of Figure 11f, unlike Figure 8f for RD = 1,
but like Figure 9c for RD = 1:6. The lesser changes be-
tween L0 = 0:1 and L0 = 0:3 show the importance of the
transition between L0 = 0 and L0 = 0:1. The singular

behavior of e�L
2=L2

0 makes the study of small values of L0
and the approach to the limit L0 ! 0 computationally
diÆcult.
We can not compare our results directly with those

of Sellwood (1989). Though for the same potential
(53), his disks are di�erent, and have the larger range
2 � RD=RC � 8:33 of radii. His m = 2 modes are also



14 M. A. JALALI and C. HUNTER

0.3 0.4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s RDΣ

2

2

1

1

(a)

0.3 0.4
-0.2

0

0.2

0.4

0.6

0.8

1

s RDΣ

1

2

2

(b)

Fig. 10.| (a) The variation of 
p (open squares) and s (�lled squares) of the N = 6, RD = 1 exponential disk as the mass of the disk is
varied. Data for the fundamental modes (1) and secondary modes (2) are connected by solid and dashed lines, respectively. The secondary
modes are double peaked. (b) Same as panel (a) but for N = 6, RD = 1:6. The secondary modes now have triple peaks.

too fast for ILRs. The spiral mode for RD=RC = 5 shown
in his Figure 3 extends out to the OLR circle, and so is
more extensive than any of ours. Sellwood �nds 0:6 to
be the critical value of the parameter v0(RD=GMD)

1=2.
That parameter becomes v0[�e

�=2��sGRC(1 + �)]1=2

with our disk. It is 0:86 when stability is achieved for
�sRD = 0:29 in Figure 10a for � = 1, and 0:59 for
�sRD = 0:33 when only the fundamental mode has sta-
bilized in Figure 10b for � = 1:6. Even so, our values
are signi�cantly less than the 1:1 which Efstathiou, Lake
& Negroponte (1982) �nd to be necessary for their N{
body experiments, though that larger value may well be
needed for nonlinear stability.

4. DISCUSSION

We analyze and explain the properties of the bar charts
in x4.1, and discuss the implications of our �ndings for
Polyachenko's (2004) simpli�ed theory in x4.2.

4.1. Transfer of Angular Momentum and Energy

The rate of change of the perturbed angular momen-
tum (B6) contains a factor s=jl
R +m
� � !j2, which
tends to �Æ [m(
� �
p) + l
R] as s ! 0. As Lynden-
Bell & Kalnajs (1972, hereafter LBK) note, this implies
that a neutrally stable wave emits and absorbs angular
momentum only at resonances. For the unstable modes
we discuss, the factor s=jl
R+m
��!j2 peaks at reso-
nances, sharply so when s is small. This peaking implies
that emission and absorption occurs mainly near reso-
nances. Figure 1 shows that, for given pattern speed

p > 0, the orbits associated with l � 0 resonances lie
at successively smaller values of the orbital frequencies

R and 
�, and hence successively further out in the
disk. That is the reason for interpreting the ows of
angular momentum, and also kinetic energy, which are
proportional to the quantities shown in the bar charts,
as outward ows.
It is evident from equations (35), (37), and (38) that

the partial derivatives @f0=@JR and @f0=@J� play a ma-
jor role in determining the signs of the Fourier compo-
nents shown in the bar charts. All the other terms in
Ll2 are either magnitudes or constants. LBK argued that
both derivatives are negative for a physically reasonable
DF. If this is so, then equation (37) shows that Ll2 > 0 for
l � 0. The compensating negative values of Ll2, necessary
because there is no net change of angular momentum,
can and must occur for l < 0. The fact that L�12 is nega-
tive, as we �nd, can be accounted for by j@f0=@JRj being
much larger than j@f0=@J�j. The prediction matches the

standard pattern we �nd in x3. The assumptions that
@f0=@JR < 0 and j@f0=@JRj � j@f0=@J�j are gener-
ally valid. Figure 6 of Kalnajs (1976) gives examples;
the contours of the two unidirectional DFs shown there
decrease much more rapidly with increasing JR than
with J�. However the modi�ed � = mK=2 models of
x3.1 are exceptional because they have regions in which
@f0(E;L)=@E, and hence @f0(JR; J�)=@JR, are positive.
Though positive values of @f0=@JR are unusual, pos-

itive values of @f0=@J� are not. They are unavoidable
with disks which are totally, or mostly, unidirectional. If
fP0 (JR; 0) = 0, as it is for the unidirectional models of
Zang (1976) and Evans & Read (1998a) and our cutout
disks, then @f0=@J� must be positive for some positive
values of J� because otherwise f0(JR; J�) could never
become positive for J� > 0. Similarly @f0=@J� must be
positive for some J� > �Jc for the tapered models of
Table 2. Furthermore the explicit formula (51) shows
that @f0=@J� > 0 for J� < 0 for the isochrone models of
x3.2. Although no positive values of @f0=@J� are visible
in Figure 6 of Kalnajs (1976), these are disks for which
the boundary integral

�m2�2
Z

dJR

"
fP0 (JR; 0)j ~Vlj2

jl
R +m
� � !j2
#
J�=0

; (55)

must then be included in the expression for Ll2. It is
negative for every l, as are the contributions to the in-
tegral (37) from positive values of @f0=@J�. Unidirec-
tional disks for which fP0 (JR; 0) > 0 can be regarded as
Jc ! 0 limits of tapered disks; the boundary integral (55)
then accounts for the e�ect of the large positive values
of @f0=@J� which occur in the taper.
Despite the occurrence of regions of positive values of

@f0=@J�, they are generally either too small, or con�ned
to too limited regions, to modify the standard bar chart
pattern. However, cutout disks have central regions in
which @f0=@J� is large and positive. That is the reason
for the negative values of L02 in the bar charts of Figures
2f and 11e for fundamental modes of cutout disks. The
bar charts for the secondary modes of these cutout disks
have the standard form, as is seen in Figure 11f. This is
because @f0=@J� < 0 for the more distant orbits which
are the more important for the secondary mode.
Integral (38) for Kl

2;1 di�ers from integral (37) for Ll2
by a factor (
� + l
R=2). This is positive for l � �1
for all direct orbits, but negative for l � �2 (See Figure
1), and is the reason why the signs of Kl

2;1 match those

of Ll2 for l � �1, but are their opposites for l � �2.
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Fig. 11.| Modes of the N = 6, RD = 1, and �sRD = 0:42 exponential disk with an L0 = 0:1 cutout. The active surface density is
shown by the dashed lines in the central panels. The left panels show the fundamental mode and the right panels the secondary mode.

This pattern holds even for the exceptional cases, with
the result that Kl

2;1 is positive for all l, except for l = �1
in standard bar charts and l = 0 in our exceptional ones.
Integral (35) for W l

2;1 di�ers from that for Ll2 by a fac-
tor (
p � 
� � l
R=2). This factor is positive for all
orbits for l = 0 modes when the pattern speed 
p > 1,
which is why W 0

2;1 is negative like L
0
2 for the exceptional

fundamental modes. W 0
2;1 and L

0
2 otherwise have oppo-

site signs for other modes with slower pattern speeds and
L02 > 0, and which are dominated by orbits within CR.
In fact W l

2;1 is negative for all l in all bar charts. This is
explained by noting that (
p � 
� � l
R=2) is negative
for modes which lie principally within OLR for l � 1,
and positive for l � �1, so that the signs of W l

2;1 are

respectively the opposite and the same as those of Ll2.
A striking feature of the bar charts is the rapidity with

which the quantities displayed there decrease with in-
creasing jlj. There are two reasons for this. One is the
increase in the denominators of their integrands in the
regions where most orbits lie. The l = �1 terms are gen-
erally important, even though there is no ILR, because
the denominator term 2(
� �
p)�
R = 2(
i �
p) is

never large for any orbit. Another reason is the decay of
the Fourier coeÆcients ~Vl with increasing jlj.

4.2. Polyachenko's Theory and Abnormal Orbits

Tables 1 through 4 show consistently that eigenval-
ues obtained from l = �1 components only, as in Poly-
achenko's (2004) simpli�ed theory, are consistently too
low. This is so in Table 3 for isochrone disks for there
is little disagreement as to the correct frequencies. Most
pattern speeds 
p well exceed the narrow range of 
i

values which the cored potentials allow, and so the as-
sumption of small j
p�
ij, on which the idea of ignoring
all but l = �1 components is based, is not then valid.
Our bar charts show clearly that a few Fourier compo-
nents other than l = �1 are always signi�cant. Poly-
achenko (2005) adds l = 0 and l = 1 components for a
Kalnajs model of Table 2 and �nds that the l = 1 terms
have the greater e�ect on the frequency. Some of our
bar charts show l = 1 terms which are larger than the
l = 0 ones, but not all do. We caution against equating
l = �1, l = 0, and l = 1 components with ILR, CR, and
OLR respectively. Not only are resonances more than
circles as we argued in the introductory remarks to x3,
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but Fourier components in angle space, which is what
the di�erent l components represent, are not the same as
resonances. There is indeed an inter-relation, but they
are conceptually distinct entities. The l = �1 compo-
nents are almost always highly signi�cant, even though
no orbits of any shape or size are in ILR in any of our
modes. Also the amplitudes of most modes become small
beyond the CR circle despite the size of their l = 1 bars
and non-negligible l = 2 bars. Remarkably just the l = 0
and l = 1 Fourier components dominate for the rapidly
rotating fundamental modes we �nd for unidirectional
disks, from which a small relative mass of low angular
momentum stars have been removed and replaced by an
inert central bulge.
The orbits which participate in our unstable modes

are predominantly abnormal as de�ned by Lynden-Bell
(1979). All suÆciently central, as well as more radial, or-
bits are abnormal. In fact even circular orbits are normal
only for R=RC > 2:44 for Kuzmin's disk, R=RC > 3:73
for the isochrone, and R=RC > 25:3 for the soft{centered
logarithmic potential. Our modes lie primarily within
these limits. A quite di�erent situation arises with the
scale-free potentials V0(R) = sgn(�)R� for � 6= 0, and
V0(R) = lnR for � = 0, studied by Evans & Read
(1998a,b). Even central orbits can then be normal be-
cause the normal/abnormal classi�cation then depends
solely on the ratio y = L=Lc(E), and is independent of
energy. Speci�cally, an orbit is abnormal if

�
h
f(y) +

�y

2

i2
f 00(y)��

2� �

2 + �

� h
f 0(y) +

�

2

i2
[f(y)� yf 0(y)] > 0; (56)

where the function f(y) = �JR=Lc(E) and depends also
on �. Its derivative f 0(y) = ��
�=
R = 1

2
jg(�; y)j,

where g(�; y) is the function used by Touma & Tremaine
(1997). The criterion (56) gives y < 0:723 for the scale-
free logarithmic potential, so that all the more circular
orbits with large L=Lc(E) are normal. For � = �0:25
and a falling rotation curve, there is a wide range of nor-
mal orbits, and only orbits with y < 0:496 are abnormal.
For � = 0:25 and a rising rotation curve, only nearly
circular orbits are normal, and all those with y < 0:973
are abnormal. All orbits are abnormal for � > 0:275.
Interestingly Evans & Read, who looked speci�cally at
the cases of � = �0:25, found that unstable modes
grow more vigorously for the rising rotation curve case
of � = 0:25 with many abnormal orbits. Their modes
have ILRs because the range of 
i is unbounded.

5. SUMMARY

This paper contains new analytical results in the the-
ory of modes of stellar disks. The most signi�cant are
the extensions of the linear perturbation theory to sec-
ond order, and the need for boundary integrals. The
boundary integrals led us to realize how important near{
radial orbits are. Kalnajs (1971) and LBK gave formu-
las for angular momentum and its 
p multiple the total
energy, but our expressions for the two separate energy
components are new. The new theory is used in our cal-
culations.
We have computed m = 2 modes for a variety of stel-

lar disks, some old and some new, some self{consistent

and some not. All have soft{centered potentials. Apart
from the two marginal � = �mK=2 cases of Table 2, we
have consistently found two modes. One is a centrally
concentrated fundamental mode with a single peak in
amplitude, and the other a more extensive, more spiral,
and usually two{peaked, secondary mode. There may
be others. We �nd that the shape, pattern speed, and
growth rate of the fundamental mode are especially sen-
sitive to the population of low angular momentum orbits.
The fundamental modes of self{consistent unidirectional
disks are compact and rapidly growing central bars. The
growth rate of this mode is reduced substantially, and
its shape becomes more extensive and spiral, if low an-
gular momentum orbits are either removed or reversed.
Removing them increases the pattern speed, while re-
versing them decreases it. Removing them also makes
the more extensive and more spiral secondary mode the
faster growing in all but one of the cases in Tables 1
and 4. We believe that this sensitivity is the reason
for di�erences between our pattern speeds and those of
AS. These occur for tapered disks, but not for the non-
tapered isochrone disks.
The sensitivity of the fundamental mode to the popula-

tion of low angular momentum orbits, many of which are
near{radial, suggests a connection with the phenomenon
of radial orbit instability. That phenomenon, reviewed
recently in Merritt (1999), is found to occur when ra-
dial orbits are suÆciently predominant in hot anisotropic
and non{rotating spherical stellar systems. The sensitiv-
ity we �nd arises in cool and rotating systems with few
near{radial orbits.
Our bar charts are the �rst to show in detail how modes

transfer angular momentum and energy between Fourier
components in angle space. Their overall patterns are
constrained, as we discuss in x4.1, but variations within
the pattern are evident. Importantly, the bar charts show
that only a handful of Fourier components account for
almost all of the transfer of angular momentum and en-
ergy. Hence accurate calculations of modes should be
achievable with relatively few Fourier components, even
if more than the three Polyachenko (2005) uses in his
x5.1. This result is important for the more realistic case
in which the halo is responsive, rather than inert as in
our non-self-consistent cases. Athanassoula (2002) �nds
that halo/disk interactions are signi�cant for the trans-
fer of angular momentum. It is reasonable to hope that
they too can be well accounted for with few Fourier com-
ponents. Because our analysis of the transfer is derived
from a second order extension of a linear theory, it can
describe only the early stages of an instability, and not
its later fully nonlinear development.
With two exceptions, modes are largely con�ned within

the CR circle, but are too fast for there to be any orbits in
ILR. The exceptional cases, which occur only when low
angular momentum stars are removed, are too fast for
any orbits to be in CR. Those modes lie within the OLR
circle. The lack on an ILR means that modes can prop-
agate into, and be reected from, the soft centers of our
disks, even in cases in which our densities drop to zero
there. The modes are unstable, sometimes rapidly so,
as swing{ampli�er theory (Toomre 1981) predicts, and
we achieve stability in x3.3 only by decreasing the active
mass of the disk. We have also found that orbital pop-
ulation, which plays little role in swing{ampli�er theory,
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does matter.
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APPENDIX

LAGRANGIAN DESCRIPTION, AND BOUNDARY INTEGRALS AS FLUXES

The matrix analysis of x2 uses an Eulerian description of phase space. Kalnajs (1977) gives an alternative Lagrangian
description. Its advantage is that it automatically includes any contributions from the motion of boundaries in phase
space. Kalnajs's Lagrangian analysis, with our de�nition (12) of Fourier coeÆcients, yields the formula

Mjk(m;!) = �4�2
1X

l=�1

Z
dJf0(JR; J�)

�
l
@

@JR
+m

@

@J�

��
	m
l;j	

m
l;k

l
R +m
� � !

�
; (A1)

with no derivatives of f0. Our equation (21) follows after integrating (A1) by parts with respect to JR and J�. Those
integrations introduce boundary terms at any boundary of the region of integration in action space unless one or other
of f0 and the term in square brackets vanish at that boundary. In the case of the wholly prograde DF of equation
(23), integration by parts with respect to J� gives precisely the boundary integral MB as de�ned in (27), plus the
area integral (26) after also integrating with respect to JR. This shows that the boundary integrals, which arise from
the step function in the Eulerian description of x2.2, can be explained as due to the motion of that boundary. In
particular, the boundary integral MB arises from the perturbation of a non-zero population of radial orbits.
LBK uses a Lagrangian analysis to calculate the contribution to dL2=dt given by stars with angular momenta in the

range (h1; h2). The result, their equation (28), contains two boundary integral terms which match those one obtains
from applying the Eulerian equation (B6) to the DF f0(JR; J�)H(J� �h1)H(h2� J�) which represents the stars with
angular momenta in the range (h1; h2). LBK interpret the boundary integrals as representing uxes through the two
boundaries. That interpretation, together with equations (40) and (41) which give a physical signi�cance to the real
and imaginary parts of the matrix M, shows that neglecting the boundary integral terms (27) for a prograde disk of
stars means neglecting the contributions to the total potential energy and angular momentum which arise from the
perturbation of radial orbits. The numerical results reported in x3.1 shows that this neglect can cause large errors.

ANGULAR MOMENTUM AND ENERGY

Both L2 and K2;1 contain integrals of the form

I2(t) =
ZZ

S(JR; J�)f2dJd�; (B1)

for di�erent functions S. We evaluate such integrals using

dI2(t)
dt

=

ZZ
S(JR; J�)

@f2

@t
dJd� =

ZZ
S(JR; J�)

�
@f2

@t
+ [f2;H0]

�
dJd�; (B2)

because the added terms have angle derivatives of periodic functions and so integrate to zero over the angles. Equation
(6) gives the last term in parentheses in (B2) as the sum of two terms. The �rst contributesZZ

�S[f0; V2]dJd� =

ZZ
S
@f0

@J�

@V2

@��
dJd� =

ZZ
@

@��

�
SV2

@f0

@J�

�
dJd� = 0: (B3)

Here the subscript � represents the pair of subscripts (R; �), and we suppose the summation convention to apply to
it. The last step again uses the fact that any integral of an integrand which is a derivative with respect to an angle
vanishes. The second term contributesZZ

�S[f1; V1]dJd� =

ZZ
S

�
@f1

@J�

@V1

@��
� @f1

@��

@V1

@J�

�
dJd� =ZZ �

�f1@V1
@��

@S

@J�
+
@V1

@��

@(Sf1)

@J�
� @(Sf1)

@��

@V1

@J�

�
dJd�: (B4)

The combination of the second and third components vanishes because it can be combined to an integral of a divergence:ZZ �
@

@J�

�
Sf1

@V1

@��

�
� @

@��

�
Sf1

@V1

@J�

��
dJd�: (B5)

The angle derivatives integrate to zero, but so too do the derivatives with respect to the actions. That is because the
di�erentiated quantities vanish at the limits in action space, as J� ! �1 and JR !1 where the perturbation tends
to zero, and at JR = 0 where V1 is independent of �R because 	m

l;j(0; J�) = 0 for l 6= 0 (cf x2.2). The remaining �rst
component of (B4) can be evaluated for S = J� as in (34), to give

dL2(t)
dt

= �2ms�2e2st
1X

l=�1

Z
dJ

�
l
@f0

@JR
+m

@f0

@J�

� j ~Vlj2
jl
R +m
� � !j2 : (B6)
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This result agrees with that of LBK whose Fourier coeÆcients are larger than ours by a factor of 4�2, and whose !
has the opposite sign. For S = H0, we get

d

dt

ZZ
H0f2dJd� = �2s�2e2st

1X
l=�1

Z
dJ

�
l
@f0

@JR
+m

@f0

@J�

�
(l
R +m
�)j ~Vlj2
jl
R +m
� � !j2 ; (B7)

A simple consequence is that
dE2
dt

=
d(K2 +W2)

dt
= 
p

dL2
dt

; (B8)

where E is the total energy. The undi�erentiated values which are quoted in x2.3 follow because of the simple time
dependence on e2st.
A deeper analysis of equation (6), though not its full solution, is needed to evaluate the integral

W2;2 = �K2;2 =

ZZ
V0f2dJd�: (B9)

We rewrite equation (6) as
@f2

@t
+ [f2;H0] + [f0; V2] = �[f1; V1]: (B10)

The left hand side of (B10), which is homogeneous in subscript 2 quantities, has the same form as the �rst order
problem for which we derived the homogeneous linear equations (22). Equation (B10) leads in a similar way to
inhomogeneous linear equations. Its right hand side contains both axisymmetric terms and non-axisymmetric ones
with wavenumber 2m. We need consider only the axisymmetric terms and the part of the solution for f2 which they
cause, because only they will contribute to the integral (B9) for W2;2. They have a Fourier expansion

e2st
1X

l=�1

~Nl(JR; J�)e
il�R ; where e2st ~Nl =

1

(2�)2

Z
d�e�il�R

�
�1
4
[f1; �V1]� 1

4
[ �f1; V1]

�
: (B11)

We represent the potential and density of the axisymmetric part of f2 by series

V2 = e2st
1X
j=0

aj 
0
j (R); �2 = e2st

1X
j=0

aj�
0
j (R); (B12)

like those of equations (15) and (16) but now with axisymmetric basis functions. We use Fourier expansions

f2 = e2st
1X

l=�1

~gl(JR; J�)e
il�R ; V2 = e2st

1X
l=�1

~Ul(JR; J�)e
il�R ; ~Ul =

1X
j=0

aj	
0
l;j ; (B13)

like those of equations (11), (12), and (18), with Fourier coeÆcients 	0
l;j de�ned as in equation (18) for m = 0.

Matching Fourier coeÆcients in equation (B10) gives

(2s+ il
R)~gl � il
@f0

@JR
~Ul = ~Nl: (B14)

Then, following the same procedure as used in x2.1, we obtain the matrix equation

[M(0; 2is)�D(0)]a = h; (B15)

where the components of the column vector h are given by

hj = 4�2
1X

l=�1

Z
dJ

i ~Nl	
0
l;j

(l
R � 2is)
: (B16)

The matrixM(0; 2is) is real because each �l pair in the sum (21) combines two complex conjugate quantities, because
	0
l;j is even in l [cf eq. (18)]. The right hand side h of equation (B15) is real because the �l pairs in the sum (B16)

also combine two complex conjugate quantities, due also to the fact that ~Nl =
�~N�l because the ~Nl are the Fourier

coeÆcients of a real function. Hence equation (B15) is a real matrix equation, and its solution for the unknown vector
a is real. Knowing a, we can evaluate

W2;2 =

Z
V0�2dx = 2�e2st

1X
j=0

aj

1Z
0

V0(R)�
0
j (R)RdR: (B17)

The reason why it is so much easier to compute W2;1, K2;1, and L2 is that they need only the single Fourier coeÆcient
~g0. Equation (B14) gives ~g0 simply as ~N0=2s and no matrix equation is needed.
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The computation of a can be checked by verifying that the total mass due to the axisymmetric density �2 vanishes.
This is

M2(t) = 2�e2st
1X
j=0

aj

1Z
0

�0j (R)RdR = 0: (B18)

Formally, the constancy of M2 follows from the analysis of Appendix B; it is the S = 1 case of integral (B1).

The double sums of integrals needed for calculating the elements of the column vector h, found after substituting ~Nl

as given by equation (B11) in equation (B16), are given in Appendix A of JH. Their most signi�cant feature is that
they, and hence the solution for W2;2 = �K2;2 intermingle di�erent Fourier components, unlike L2, W2;1, and K2;1 for
which the Fourier components can be separated as in equations (35) and (36).

MODELS FOR EXPONENTIAL DISKS

The di�erence V ext
0 (R) = V0(R)�V D

0 (R) by which the total unperturbed potential (53) exceeds that due to the disk
(54) must be provided by some halo or bulge component of the galaxy, whose density must be everywhere positive.
Figure 5 illustrates the consequences of requiring that that external density be spherical. That density is given by
Poisson's equation as

�H(r) =
1

4�G

1

r2
d

dr

�
rv2H(r)

�
; v2H(R) = R

dV ext
0 (R)

dR
� 0; (C1)

(Zang 1976) where r =
p
R2 + z2. Here v2H(R) gives the amount by which the square of the circular velocity for the

galaxy exceeds that of the disk alone. The physically necessary condition �H(r) � 0 requires that v2H(R) � 0, but is
more restrictive. The region below the solid curve in Figure 5 gives the range of the dimensionless combinations of
parameters G�sRD=v

2
0 and RC=RD which it allows. The boundary value G�sRD=v

2
0 = 0:304 of the solid curve at

� = 0 applies to the limit of the uncored exponential disk in a singular logarithmic potential. An alternative statement
of the condition �H(r) � 0 in this limit is v0(RD=GMD)

1=2 � 0:723, where MD is the mass of the uncored exponential
disk.
Sellwood (1989), and unpublished work by Toomre described there, studied modes of the uncored exponential disk

in the soft{centered logarithmic potential (53). The critical value of v0(RD=GMD)
1=2 needed to ensure that �H > 0

for this case is not greatly changed when the logarithmic potential is soft{centered. It is reduced only to 0:691 when
� = RC=RD = 0:5. For � = 0:2 and v0(RD=GMD)

1=2 = 0:6 as in the model displayed in Sellwood's Figures 1 and 2,
not only does �H become negative, but v2H(R) < 0 for 1:4 < R=RD < 3:0. The �xed halo therefore exerts an outward
force in this range. (The singular nature of the potential of the uncored exponential disk also causes �H < 0, but only
for R=RD � 1 which is well below the softening length used in computations.)
Giovanelli & Haynes (2002) analyzed a large number of rotation curves and have found that the ratio of the scale

length of the steep inner rise of the rotation curve to the scale length of the exponential varies from 0.63 for the most
luminous galaxies, to 1.28 for their least luminous. They �t a parametric model in which the rotation curve decays
exponentially towards its form in the outer regions, and hence their ratios provide only the approximate guidance that
it is reasonable to use values of order unity for our ratio RC=RD. Figure 6 plots total circular velocity, and the parts
provided by the disk and the halo/bulge for three di�erent relative sizes of the exponential disk which cover more than
their range. The value of G�sRD=v

2
0 is close to 90% of the maximum allowable for that RC=RD in each case. The

least extensive disk makes the largest contribution to the rotation curve at the center, but its relative contribution
then declines rapidly. The disk's contribution tracks the rotation curve considerably further in the intermediate case
with RD = RC, and requires only a relatively small contribution from a central halo/bulge to make up the de�cit. As
RD increases, the disk becomes less maximal and an increasingly large spherical central halo/bulge is needed.

We construct DFs by using the identity exp(�V0=v20)
p
1 +R2=R2

C = 1 to partition the density (54) in the form

�D(R) = �se
��e�e�2N�

�
1 +

R2

R2
C

�N

; � =
V0

v20
; � =

RC

RD

: (C2)

Here N is an integer parameter which allows us to generate a family of models. Binomial expansion of (1 +R2=R2
C)

N

gives �D as a sum of powers of R2 multiplied by functions of the potential �. We then use Sawamura's (1988) method,
following Evans & Collett (1993) x3.1, to �nd the DF as

fP0 (E;L) = �s

NX
n=0

�
N

n

��
L

RC

�2n

gn(E); gn(E) =
(�1)n+1

2n
p
��(n+ 1=2)

dn+1

dEn+1

�
e�2NE=v2

0e��e
E=v2

0

�
: (C3)

Figure 7a plots the mean rotation velocity hv�i for four di�erent values of N , and shows that the disks become
increasingly cool and centrifugally supported with increasing N . The mean rotation velocity exceeds the circular
velocity near the center, due to the n = 0 isotropic term in the DF (C3). Its density, which is

�iso = �s

�
1 +

R2

R2
C

��N
exp

"
�
p
R2 +R2

C

RD

#
; (C4)
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is con�ned to the central region. It is compressed asN increases, and disappears asN !1 along with all radial orbits.
The other interesting feature of Figure 7a is that hv�i declines away from v0 at large distances. Evans & Collett's
(1993) models for a simple uncored exponential disk in a singular logarithmic potential have the same property - see
their Figure 2a - and for the same reason. Although hv�i ! v0 as N !1, their equation (3.17) also shows that hv�i
decreases for increasing R for �xed N , as in their Figure 2a and our Figure 7a.
Figure 7b plots the Toomre stability parameter Q for two di�erent N values and for the same three sizes of the

exponential disk as in Figure 6. The cooler N = 6 models have regions of varying extent in which Q is close to its
marginal value of 1. The growth of Q with increasing R is due primarily to decreasing �D because the radial velocity
dispersion �R =

p
hv2Ri falls o� only mildly.
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